
AD-A241 924

Kii 111 11 __

I AUTOMATED PLANNING WITH SPECIAL RELEVANCE

TO ASSOCIATE SYSTEMS TECHNOLOGY
AND MISSION PLNNIING

FINAL REPORT

BDM/VSQ-91-0742-TR

9 -2

£91-13900 91 10 2.3 ,314-

I 't,'l!'l• l•''il'li!,:uIi

I

I
4001 NORTH FAIRFAX DRIVE
SUITE 750
ARLINGTON, VIRGINIA 22202i (703) 351-6900

I
I
I

AUTOMATED PLANNING WITH SPECIAL RELEVANCE
TO ASSOCIATE SYSTEMS TECHNOLOGY

AND MISSION PLANNiN4G
FINAL REPORT

I BDM/VSQ-91-0742-TR

i September 1991

ARPA ORDER NO. 6707/4 , ,
CONTRACT NO. MDA972-90-C-0039 '

Sponsored by
Defense Advanced Research Projects Agency

Advanced Systems Technology Office
3701 N. Fairfax Dr.

Arlington, VA 22203I
The views of and conclusions contained in this document are those oI

the author and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

I

REPORT DOCUMENTATION PAGE Form poov4?

1 7 ~ NOAl. 07W4.188

Iaw &*fo U" o ot In' "Row I 0 WV I0IW '910 a al

i 0(20S 4 a4. A•liM. va ,M,,., I.0,,u PAdcWts,, . P0,191 Wo ' 'm.. omh .fp . 0C 2 .

1. AGENCY USE ONLY (Leavo eot) a. REPORT DATE 3. REPORT TYPE ANO OATZS COVERED

September 1991 FINAL 5/90- 9/91
4. TITLE AND SUI--LE IF $- FUNDING NUMIERS

Automated Plabning with Special Relevance to Associate ARPA
Systems Tecnnology and Mission Planning. (Automated
Planning).

6. AUTHOR(S)
Mr. Phili A. MIerkel EBDM) Dr. John B.Gilaier (BDM)Dr. Paul t. Lehner GHU)Dr. Roger A. Geesey (BDM)

7. PERFORMING ORGANIZATION NAMEýS) AND ADORESS(ES) 11- PERFORMING ORGANIzATiON=1Df International, inc. REPORT NUMBER

4001 X. Fairfax Dr., Suite #750 BDM/VSQ-91-0742-TR
Arlington, VA 22203 1

9. SPONSORING/MONITORJNG AGENCY NAME(S) AND ADOIOS.(ES) 10. SPONSONNG/ MONITORING

i Defense AdVdnced Researcn ProjecLs Agency AGENCY REPORT NUMIER

Advanced Systems Technology Office
3701 N. Fairfax Drive
Arlington, VA 22203

11. SUPPLE.•.1oTA"R NOTES

CONTRACT NO. I1DA072-90-C-0039, Task 2 Final Report
128. OISTRIBUTION / AVAILAOIUTY STATEMENT 12b. DISTRIBUTION COOD

Unlimited

13. AISTRACT (Maximum 200 worf)

This reporL describes the results of work performed to establish the technical
basis for a future R&D effort in mission planning technology. One known operational
need is for aircrew decision aiding for dynamic replanning during the performance of
modern nilitary air missions wnere information flow, Knowledge and detailed reasoning
can raoically alter Lhe ou'come. Artificial Intelligence technologies have been
applied to create associace concepts with automated planning being a key construct to
aid aecision naking in time constrained, rapidly changing situations. Basic and
advanced research programs such as Pilot's Associate, Rotorcraft Pilot's Associate
and ine Submarine Operational Automation System have each introduced relevant ad-
vances to meet service-specific needs. This report provides an overview of auto-
mated planning techniques followed by an applications and technology map. The
material is supportea by information on the relationsnips of automated planning LU
the techniques of matnematical optimization, decision theory, et. al. In conclusion,
tne general as-essment of automated planning technologies is offered followed by3 recomnendation,. for directions of new research and associate systems development.

_ SUIUECT TERMS .. 15. NUMBER OF PAGES
Intelligent Systems, Decision Making, Automation Real-Time, 1i3
Artificial Intelligence, Planning, Situation Assessment, . PRICE CODE
Applications, Knowledge

17. SEKJRITY C.ASSIFICATION II. SECUNRTY CLASSWIC.ATION 19, SECURITY CLASSIFICATION 20. UMATION OF ABSTRACT
OF REPORT OF THIS PAGE OF AISTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMIlTED
NSN 7540-01-28O•-500 " 'anaard kirn 298 (Rev 2,89)

-t, ,0- 0 0V ANSI %1d 1]9. S

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent witn the rest of the report, particularly the cover and title page.
Instructions for filling in each biock of the form follow. it is important to stay within the lines to meet
optical icsnning requirements.

Block 1. Agency Use Only tLeave blank). Block 12a. DistributtorVAvailability Statement.
Denotes puolic availabiity or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR)I

Clock 3. Type of Report and Dates Covered. 000 See DoDD 5230.24, Distribution
State whether report is interim, final, etc. ifo n Tech.ia I
applicable, enter inclusive reoort dates (e.g. 10 Statements on Technical

Jun 87- 30 Jun 88). DOE Deauu iortues.

Block 4. Title and Subtitle. A title is taken from NASA - See Hanobook NHB 2200.2,

the part of the report that provides the most NTIS - Leave blank.

meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, ana
include subtitle for the specific volume On
classified documents enter the title classification DOD Leave blank.

in parenthesesD DOE rDOE distribution categories
from the Standard Distribution for

Block S. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank

following labels:

C - Contract PR Project Block 13. Abstract Include a brief (Maximum
G - Grant TA - Task 200 words) factuai summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No

Block 6, Author(s) Name(s) of pprson(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, per•,'rming identifying major suoiects in the report.
the research, orcreditea with the co .nt of the
report. If editor or comolier, this should follow
the name(s). Block 1S. Numner of Pages. Enter the total

Block 7. Performing Organiza ion Name(s) and fumoer of pages.

Address(es). Self-explanatory. BlOck 16. Price Code. Enter appropriatePrice

Block 8. Performing Organization Reoort code (NTIS only).
Number. Enter the unioue alphanumeric report
number(s) assigned oy the organization BtBcks 17.-19. Security Classifications Selt-
performing the report. I explanatory Enter U S. Security Classification in
BVock 9. SponsorinciMonitoring Agency Namets) accordance with U S. Security Regulations (e.
and Address(es). Self-exolanatory. UNCLASSIFIED). If form contains classified

B information. stamp ciassification on the top and
Black 10. Sponsorina/Mon~tornnA9.nZy Ioto oIt ae

________________boittom of the page.
Report Nurnoer. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must 3
information not nciudeo elsewhere such as: oe comopeted to assign a imitation to tne
Prepared in cooperation wi 0U. . Trans of... ; To e aostract. Enter either UL (unlimited) or SAR (same
oublishea in.... When a report Is revised, include as report). An entry in this block is necessary if

a statement whether the new report suoerseaes tne abstract is to be limited. If blank, the abstract
or supplements tne older report i is assumed to be unlimited.

•tancara Ftcr." 29a Back ,Rev 2-8•

BDM INTERNATIONAL, INC.

TABLE OF CONTENTS

SECI7ON TITLE PAGE

TABLE OF CONTENTS i

LIST OF FIGURES v

FOREWORD vii

INTRODUCTION viii

CHAPTER 1. PLANNING AS SEARCH i

1.0 Introduction I
1.1 Planning as Heuristic Search 3I 1.1.1 State-Space Graphs 3
1 1.2 Searching State-Space Graphs 7
1 .1.2.1 Undirected Search 7
1 1.2.2 LocalIy-directed Search 10
1.1.2.3 Globally-directed Search 10

1 1.2.4 Other Search Procedures 1 3
1.2 Relevance to Associate Systems

Technology 14
1.2.1. Plan Generation 14
1.2.2 Plan Modification 15
1.2.3 Real-time Planning 16

CHAPTER 2. CLASSICAL PLANNING: USING SUBGOALS
TO CONTROL SEARCH 19

2.1 General Problem Solver (GPS) 1 9I 2.2 Stanford Research Institute
"Problem Solver (STRIPS) 20

2.3 Regression 27
2.4 Nonlinear Planning 30
2.5 Hierarchical Planning 30
z .6 Planning and Learning 3 1
2.7 Applications and Associate Technology 3 1

1 CI,.\PTER 3. PLANNING AS PLAN REFINEMENT 3 3

3.1 "IWVEAK 33

I BDDM[.VSQ-91-0742-TR

BDM INTERNATIONAL, INC.

TAJ.1 ,E OF CONTENTS n

SEC-RON TITLE PAGE

3.2 Context-Dependent Consequences 40
3.3 Generalized Constraint Processing 41
3.4 Skeletcl Planning 43
3.5 Relevance to Associate System

Technology 44
3.5.1 Plan Generation 44

3.5.2 Plan Modification 46
3.5.3 Real-time Planning 46

CHAPTER 4. PLANNING AS PLAN TRANSFORMATION
AND CASE BASED PLANNING 49

4.1 Mechanisms for Plan Transformation 49 n
4.2 Case-Based Planning -53
4.3 Relevance to Associate Technology 53
4.3.1 Plan Generation 53
4.3.2 Plan Modification 54
4.3.3 Real-time Planning 54

CHtAPTER 5. PLANNING FROM FIRST-PRINCIPALS 57 I
5. 1 First Order Predicate Calculus (FOPC) 57
5.1.1 Language and Intended Denotation 58
5.1.2 Deduction 59 I
5.1.3 Soundness and Completeness 60
5.2 The Situation Calculus and other

Temporal Logics 61
5.2.1 The Situation Calculus 61
5.2.2 Temporal Logics 63
5.3 Fundamental Proglems with Formal

Logics for Planning 64
5.4 Logics for Non-Monotonic Reasoning 65 I
5.4.1 An Example from Default Logic 66
5.4.2 Problems with Logics for Non-

Monotonic Reasoning 67
5.5 Possible Worlds Planning 68
5.6. Relevance to Associate Technology 69
5.6.1 Plan Gcncration and Modification 69
5.6.2 Real-time Planning 69

i I 3DMI/VSQ-91-0742-TR

BDM INTERNATIONAL, INC.

I TABLE OF CONTENTS

SECTION TITLE PAGE

CHAPTER 6. PLANNING AND REACTING: ARCHITECTURES
FOR PLANNING IN REAL-TIME 7 1

6.1 Situated Activity/Universal Planning 7 1
6.2 Layers of Planning 73
6.3 Scheduling. Planning, Reacting, and

Control Activities 73
6.4 Decision Theoretic Control of Planning 74
6.5 Planning for Reaction 741 6.6 Anytime Problem Solving 74
6.7 Relevance to Pilot's Associate 75

I CHAPTER 7. AUTOMATED PLANNING AND MATHEMATICAL
OPTI MIZATION 77

1 7.1 Breaking the Power/Generality
Tradeoff 78

I 7.2 Relevance to Associate Technology 80

CHAPTER 8. AUTOMATED PLANNING, UNCERTALNTY
I HANDLING AND DECi6ON THEORY 83

8.1 Uncertainty Management with a
Quantitative Belief Calculus 83

8.2 Applications of Decision Theory to
Automated Planning 90

8.3 Uncertainty Management using
Reason Maintenance 9 1

I 8.4 Merging Probabilistic and Assumption
based Reasoning 92

8.5 Relevance to Associate Technology 92
0.5.1 Plan Generation 92
8.5.2 Replanning and Real-time Planning 93

I CIHAPTER 9. HARDWARE ISSUES IN AUTOMATED PLANNING 95

1 9.1 Planning Technology II:-rarchy
Perspective 95

9.2 Survey Results 98

iii BDM/VSQ-91-0742-TR

BDM INTERNATI ,\4AL, INC. I

TABLE OF CONTENTS I

SECTION TITLE PAGE

9.2.1 Zap Processor 98
9.2.2 Parallel Prolog 99
9.2.3 Specialized Prolog Engines 99
9.2.4 Production Rule Systems 100
9.2.5 Fuzzy Logic 101
9.2.6 Other Specialized HIardware 1 01
9.2.7 Application of SIMD to Planning 1 02
9.3 Other Hardware having Potential to

Planning 102
9.3.1 Vision Architectures 102
9.3.2 Related Domain Hardware 103
9.3.3 Neural Network 104
9.3.4 Other High Performance lHardware 104
9.4 Conclusions and Recommendations 105
9.5 References 107

"Cl IAPTER 10. SUMMLARY AND RECOMMENDATIONS 109 I
RE-REINCES 112

I
I

I-

U

t v B DM"IVSQ-91-0742-TRI

BDM INTERNATIONAL, INC.

I ILIST OF FIGURES

NUMBER TITILE PAGE

SI - i Eight Tile Puzzle Problem 4

1-2 Portion of State Space Graph for Eight
Puzzle Problem 5

I I-3 Simple Mission Planning Problem 6

S1-4 Typical State Space Graph 8

1-5 A State Space Graph - Weighted 12

I 2-1 Example of State Description 21

I 2"2 •Example of STR!PS Operations 2 2

2--3 Plan to Achieve ON(A,B) ON(B,C) 23

2-4 The Sussman Anomaly 26

3-1 First Partial Plan 36

3-•_? Second Partial Plan 37

3-3 Third Partial Plan 38

3-4 Final Plan 39

4-1 Blocks World Problem for Trans-
formational Planning Example 50

I 0-1 A Reasonable "Plan" from a Reactive
Robot 72

I 7-1 Power/Generality Tradeoff 79

I 7-2 Architecture for Merging Optimization

and Satisficing P rocedures 81

I
I BDMfV SQ-91-74-T

BDM INTERNATIONAL. INC. I

l.AST O! FIGURES I

NUIMBER TIIL- PAGE

S- 1 Probabilistic Planning Problem S5 5

8-2 First Chronicle for Robot Planning
Problem 86

8 - 3 Second Chronicle for Robot Planning 8

Problem ,7

S-4 Third Chronicle for Robot Planring I
Problem 89

I
I
I
I
I
U
I
I
I
I
I

Bi DNM/SQ-91 -0742-TR

BBDM INTERNATIONAL, INC.

I FOREWORD

With the advent of programs such as Pilot's Associate, Rotorcraft
Pilot's Associate, Submarine Operational Automation System, and various
others there has emerged an increasing interest in associate systems
technology - the develop of systems that provide real-time support forJ planning and decision making in rapidly evolving situations. The objective
of this report is to explore the relevance of automated planning in
Artificial Intelligence (AI) to associate systems technology. Specificallyj this report achieves four objectives. First, it provides a general overview
of automated planning techniques. Although the automated planning
literature is extensive it lacks a good introduction. Consequent!y, we have
prepared this report so that it may serve as a general introduction.
>ecoiid, for each group of automated planning techniques t!,e potential for

s csoe iate systems technology applications is explored. Third, we exploreIire relationship between automated planning and other technologies (viz.,
mathematical optimization, decision theory, hardwar, engineering) with
respect to their potential relevance to associal,: systems technology.
Finally, we merge the previous discussions into :i general assessment of
automated planning and recommend directiois., for future research in
automated planning that would directly c,,_itribute to better associate
systems technology systems.

IThis report contains three party Part I (Chapters 1 - 6) examines
alternative paradigms for automated planning and the relevance of each
paradigm to associate systems tc,-hnology. Part II (Chapters 7 - 9)
examines the relationship betweed Al automated planning techniques and
related techniques in other Jdiciplines, specifically Operations Research,I Decision Theory and Hardv,.re Engineering. As indicated there, we feel
that associate systems could benefit considerably from an effective
merging of these disciplines. Finally, Chapter 10 presents our3 recommendation for fiuture technology investments that are relevant to
associate systems tecimology.

I BDM would 'ike to acknowledge the dedication of Dr. Paul E. Lehner
of George Mason University who served as a consultant for this project and3 provided materil for this report.

SI Sv ii BDMNVSQ-91-0742-TR

3DM INIERNATIONAL, INC. I
INTROi DUCTION I

Ilis report describes the work peiformed by I1)M and its technical I
teaim in establishing the technical basis for a future research and
developnient program inl the area of mission planning technology. The
perceived operational need is that of dvnamic repianni n g -- planning
pIrlormcd during the execution of air missions in response to changes in
the objectives and con:;traints surrounding the original planning process.
"This work was performed for DARPA/ASTO under the Pilot's Associate
S\stcm lInginecring and Technical Analysis project. It was the intention of
l)ARP.A that this work complement the work done by SRS Technologies
under a ,imilar task which focused on the assessment of current tactical
arid st rateg ic mission pl 1 niir capabilities and the projection of future

cpcrational needs. The BDM project serves to characterize the technical
nature of tile dynamic mission planning problem and to suggest technical

approaclhs which might warrant future investment. I
The process used by BDM was to firAt start with future operational

scenarios. Both tactical and strategic scenarios were postulated and
analyzed. The strategic mission scenario included the full range of mission
functions that could be envisioned for the future, including piovisions for
search and reconnaissance. The strategic mission planning problem was
then characterized in a general fashion. With that generalization, a generic
planning problem was defined which included all of the mathematical
complexity of the original but cast the problem in a non-military light.
This part of the work was performed by ORCA, a Caiifornia-based small
business. The problem v, hich was found to represent the military mission I
planning problem was one centered on a Old West Marketeer. a comptex
extension of the classic travelling salesman problem. 3

The tactical scenario was generated by the operations research
department of BDM. Based on emerging world tensions, BDM postulated an
invasion of Kuwait and Saudi Arabia by Iraq. Forces based in Saudi Arabia
took on the familiar offensive counter air, defensive counter air, close air
support, and battlefield interdiction roles. In order to anakyze these
missions from a technology perspecti"e, a series in relationship graphs
were genierated. These ,raphs depicted tie objective of the mission at the
,.enter arid arrayed all of the contributing, factors around with arrows
inudicatine that, for instance, avoiding dLtcction i,, a function of rangze
speed, radar effectiveness. countermeasure effectiveness, and RCS tto

nlamlle a few).

I
v i ii BDMASQ-91 -0)742-TR I

BDM INTERNATIONAL, INC.

This ,kork led to description of the mission planning problem in the
form of constraint satisfaction. A constraint representation syntax was
developed in first order predicate calculus which would be useful at some
future time in order for the actual computation of flight paths for aircraft,
formations, and mission packages as part of theater scale zir operation.

I The work in constraint representation language for mission planning led
into the techniques for solution of such constraint reasoning problems. The
majority of this report is devoted to the description and assessment of
those techniques in the context of planning within an associate system.

The work led a natural distinction between the optimization
approaches to problem solving and the constraint-based (AI) approaches
to problem solving. The investigators for this project absolutely satisfied
"themselves that boih approaches are necessary, and that complex
problems will not be solved satisfactorily by either methd alone. An
optimization problem does not scale linearly with size. The scale factor is
closer to a power of 7. A pure constraint-based solution may not provide
adequate assurance of optimnality. Clearly, the problems represented by
Idvnamic mission replanning quickly become combinatorially explosive. A
different method must be applied to avoid the combinatorics trap. This
implies a form of constraint-based preprocessing to limit the actual
problem to size that lends itself to initial and subsequent iterative solution
by a variety of optimization techniques. A future R&D program which
addresses dynamic mission replanning should include investigation into

I combinations of solution techniques integrated into a single solution
environment.

In addition to Al based automated planning techniques presented in
Chapters 1-6, there are a variety of technologies that are relevant to
automated planning and specifically relevant to mission planning and
asociate systems. It Chapters 7-9 we examine three such areas:
mathematical optimization, decision theory, and hardware.

Mathzematica! optimization (also called mathematical programming)
is an area of Operations !eksearch oriented toward the development of
automated procedures that find optimal solutions to a variety of problems.
In the area of automated planning, mathematical optimization represents a
paradigm that competes with the Al paradigms. In the Al paradigm,
automated planning problems are viewed as finding a satisficing solution
that is consistent with a set of symbolic constraints. In the OR paradigm,

planni ,g is vie-'.ed as finding a solution that scores high (perhaps
optimally) on an objective function (measure of merit) while staving,
consistenrit with a set of mathematical constraints (a set of equations and

iX ~BDM/VSQ.Q-91-0742-TR

BDM INTERNATIONAL, INC. I
inequalities). In Chaptei 7 we will examine the merits and benefits of each I
approach, and discuss an appropriate melding of these two perspectives.

Decision Theory is an area of research devoted to the de'velopment of
normative theories of inference and decision making. In the decision
theory perspective plah~ning is viewed simply as a problem of finding
actions that maximize expected utility. Like mathematical optimization,
decision theory provides a paradigm for automated planning that competes
with the constraint satisfaction/satisficing approach of the Al paradigms. I
In the last few years, decision theory has had a significant resurgence
within the AI c-immunity. This is evidenced by the most recent AAAI
(1991) conference, where a substantial portion of the papers presented
decision theoretic approaches. In Chapter 8 we examine the decision
theoretic paradigm as well as the variety of ways it is currently being 3
applied to automated planning problems.

Finally, Chapter 9 examines current developments in hardware
technology and its possible application to auto.,'ated planning. Unlike
some other areas in Al (e.g., image understanding) very little has been
done to develop hardware capabilities that are uniquely tailored to
automated planning. The potential for such developments is explored in
Chapter 9.

The complete set of recommendations resulting from this project are
described in Chapter 10.

i
I

I
I
1

I
X BDM/"SQ-9 -1-1742-TR

I

BDM INTERNATIONAL, INC.

CHAPTER I

PLANNING AS SEARCH

1.0 Introduction

Within the At community, there exist several competing paradigms
for automated planning. Each paradigm provides a general perspective on
the following questions. What is a plan? How should plan-relevant
knowledge be represented? How should plans be generated and modified?

Our introduction to automated planning is organized around these
paradigms. Specifically, we review the following approaches:

Planning as Heuristic Search - In this paradigm, a plan is defined as a
sequence of actions that results in a sequence of states that ends
with a state satisfying a goal condition. Planning problems are
characterized using a state-space representation. Actions are defined
as functions that map one state into another. Automated planning is
treated as a problem of searching through the state-space. This is
achieved by applying general purpose heuristic search procedures.

Applications of this approach are found in the path planning
algorithms used in Pilot's Associate.

Planning as Subgoal Directed Search - This approach is often referred
to as classical planning. Planning is still viewed as a problem in
state-space search. However, search through tle state-space is goal-
directed. Beginning with the goal description, subgoals are defined
and refined until specific actions can be found to achieve those
subgoals. By achieving a sequence of subgoals, the final goal
condition is reached.

Planning as Constrair' Posting - The distinguishing feature of !his
approach is the recognition that a plan does not need to be a fully
detailed plan of action. Often it is sufficient to identify the principal
actions that must occur and to put some constraints on when and
how those actions will occur. Any specific set of behaviors that
conforms to these constraints should result in achieving the goal.
Planning is the process of identifying the relevant set of constraints.

1 1BDMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. U
Although most work in the constraint posting approach assumes a U
state-space representation, this representation is not essential to the
paradigm. Consequently, it is more general that the previous two
paradigms. A variant of this approach is Pilot's Associate to generate
tactical advice for the pilots.

Planning as Plat Transformation - This paradigm is founded on the
recognition that an effective planner does not enter a planning
problem tabula rasa. The planner will usually have a store of I
template plans or historical cases from which the planner can quickly
retrieve plans that have worked in similar situations. Planning is a
two step process: retrieve a plan that is relevant to the current
problem, and modify that plan until a satisfactory plan is reached.
Automated planning procedures in the Submarine Operational 3
Automation System is based on this approach.

Planning from First-Principles - This paradigm is founded on the I
belief that a truly general planning system should allow one to
declaratively characterize a problem domain and then let a general
problem solving mechanism generate plans. Usually First-Order
Predicate Logic or some extension is proposed as the language for
describing the problem domain. Once the problem domain has been 3
characterized as a set of declarative statements in a logic all
reasoning can be achieved using general theorem proving techniques.
This includes reasoning necessary to generate plans. As a result, it is
not necessary to implement a specialized problem solving mechanism
for planning.

Planning and Reacting - This is not a paradigm, but an emerging area
of research. Until recently real-time planning has not received a lot
of attention in the Al research community. The focus of the planning
community was on the abstract plan generation process, and not on
the problem of controlling the behavior of robotic agents. 3
Consequently, problems related to plan execution monitoring, plan
repair. and real time behavioi control were generally ignored.
However, recent DARPA programs such as the Autonomous Land I
Vehicle and Pilot's Associate have focused attention on the problem
of real-time planning and control. In Chapter 6 we review several
paradigms that have been proposed for addressing this problem.

For each paradigm, we examine its relevance to associate systems
technology from three perspectives: plan generation, real time planning,
and plan modification. For plan generation we examine the range of

BJM VSQ-91-0742-TR

m BDM INTERNATIONAL, INC.

I problems for which the paradigm is appropriate. For real time planning,

we will examine the extent to which each paradigm can support both rapid
planning and anytime problem solving An anytime problem solver (Dean
and Boddy, 1988) can be interrupted at any time during problem solving
with a request for the current best solution. For plan modification we are
interested in the extent to which the paradigm can correctly and rapidly
adapt a plan to an evolving situation. The planner should be able toI minimize the extent to which the plan is modified.

1.1 Planning as Heuristic Search

The planning as search paradigm treats automated planning as a

problem in state-space search. To apply this paradigm one must (a)
represent the planning problem as a state-space graph, and (b) apply a
heuristic search technique to find a solution path in the state-space graph.
The solution path is the plan generated. The elements of this approach are
described below.I
1.1.1 State-Space Graphs

A common way to view planning problems is to decompose the
problem domain into a set of possible states. Consider, for instance, the
eight puzzle problem shown in Figure 1-1. The objective is to move tiles
(numbered I - 8) from their initial location to their final location. Each
possible configuration of tiles represents a possible state. We can move
from one state to another by (implicitly) moving the blank square up,
down, left or right. Each of these four possibilities represen:s a state-3 change operation. Starting with the initial position, one can depict all
possible sequences of state-change operations as a state-space graph. A
portion of the state-space graph for Figure 1-1 is shown in Figure 1-2. The

S objective of state-space search is to find a path from the initial state to a
goal state. For the problem in Figure 1-1, one such path is shown in Figure

I 1-2.

An important property of state-space representations is that of path

independence. In going from one state to another, say Si to Sj, the contents
of Sj should not depend on the path taken to get from Si to Sj. This
property is needed in order to guarantee that the effect of any state-
ci-.ange operation applied to any state Sj can be computed from just the
contents of Si and nothing else. All state-space search procedures assume
that this property is satisfied.

3 BDMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

I

3 1 2 1 2

4 7 5 3 4 5 I

6 8 6 7 8 3
Initial State Goal State 3

I

Figure 1-1: Eight Tile Puzzle Problem I

As another example, consider the simplified mission planning I
problem depicted in Figure 1-3. The aircraft at position A must maneuver
to position B and then return to A. The darkened areas represent regions
of high lethality. A common way to model this problem is to overlay a grid
on the map, and to treat aircraft movements as movements from one grid
location to an adjacent one. Each grid to grid movement identifies a state-
change operation. However, the relevant features of aircraft's status is
determined by more than just its current location. Also important are
features such as current fuel level, current lethality, total lethality, etc.
Consequently, a state-space representation of this problem describes a

state in terms of a state vector (e.g., <location, altitude, speed, fuel, current
lethality, total lethality, ... >) and state-change operations as functions that
calculate a new vector of values from the values in the previous state.

4 BDMVSQ-91-0742-rR N

BDM INTERNATIONAL, INC.

Initial State,
I 0

,, / S3

i r d] U d u

I

Goal
S~State

Fig-ure 1-2: Portion of State Space Graph for Eight Puzzle ProblemI

IBD V -9 -7 2 T

IIBD_ INTERNATIONAL, INC.Bi

L I

__-_. ___ ___ I

V -

Fgure 1-3: Simple Mission Planning Problem

6 BDMVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

I 1.1.2 Searching State-Space Graphs

I Once a planning problem has been translated into a state-space
representation, standard heuristic search techniques can be used to find a
path from the initial state to a goal state. Consequently, a special
mechanism for plan generation is not required.

Heuristic search techniques can be loosely separated into three
categories: undirected, locally-directed, globally-directed. Each of these
techniques will be illustrated using the example graph shown in Figure 1-I 4. In reviewing the search techniques below, keep in mind that

1. each node represents a state,

2. arcs correspond to state transition operations (i.e., actions), and

1 3. for any node, its subnodes represent the set of possible next states.

Iih Figure 1-4, for instance, node 1 represents the initial state, and
nodes 10 and 16 represent two goal states (i.e., two states that satisfy the
goal criteria). The sequence 1-->4-->10 defines a plan of action involvinL
two actions. The first action changes the initial state into state 4 and the
second action changes state 4 into state 10 -- a goal state.I
1.1.2.1 Undirected Search

I Undirected search techniques simply expand nodcs in a graph
according to a predefined pattern, irrespective of the contents of nodes

I currently open. 1

Depth-first search is an example. Whenever a node is visited 2 and
expanded, then the first subnode generated is immediately visited until a
stopping criteria (e.g., depth limit) is reached. When a subnode, sn, fails
(i.e., stopping criteria is reached or all subnodes of Sn have failed) the next
subnode (i.e., a sibling of Sn) is visited. This continues until a goal node is

1A node is expanded if ihe subnodes of that node have been generated. An
open node is a node that has been generated, but not expanded.

2 A node being visitcd i: processed as follows: (1) check to see if it is a goal
node, (2) check to see if the stopping criteria has been reached, and if not (3)I generate subnodcs.

7 BDMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

1 I
I

6 I

1 2 33 44 151

I
I-

Figure 1-4: Typical State Space GraphI -

S6DM8VSQ-91-0742-TR

I

BDM INTERNATIONAL, INC.

Ireached or search terminates without a solution. In the case of Figure 1-4

the sequence of nodes visited would be

I1, 2, 5. 11, 12, 6, 13, 14, 7, 15, 3, 7, 15, 8, 15, 16.

I The solution path is 1-->3-->8-->16.

In breadth-first all nodes generated at one level are visited before
any node at a deeper level is visited. In Figure 1-4, for instance, the
sequence of nodes visited by breadth-first search is

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

3 and the solution path is 1-->4-->10.

Both depth-first and breadth-first search have severe weaknesses.
Depth-first search tends to visit far more nodes that is required, and
usually returns an unnecessarily long solution path. Breadth-first, on the
other hand, is computationally intractable since it requires that all nodes
generated must be maintained in memory.

I A recent development in blind search techniques (Korf, 1985) is
depth-first iterative deepening (DFID). DFID iteratively applies depth-first
at increasing depth levels. All nodes to level one are searched, then all
nodes to level two are searched, and all nodes to level 3, etc. At cach
iteration, search begins anew. All tiodes generated during previous
iteration are generated again. For instance, in the case of Figure 1-4, DFID
would visit nodes in the following order:

Level 1: 1, 2, 3, 4
Level 2: 1, 2, 5, 6, 7. 3, 7, 8, 4, 9, 10,

I returning the path 1-->4-->10.

Despite the fact that DFID seems wasteful this extra cost of
repeatedly revisiting higher level nodes does not increase the order of
magnitude of the search. Consequently, with respect to all possible blind
search techniques, DFID search is optimal with respect to memory usage
(number of nodes maintained in memory) and length of the solution path,
and is asymptotically optimal on the order of magnitude of the number of

Inodes visited. In short, DFID is optimal or nearly optimal on all major
criteria for evaluating blind search techniques.

I
i9 BDMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. n

I
1.1.2.2 Locally-directed Search

Undirected search techniques do not presume any ordering of siblingn
nodes. For instance, for the sibling nodes 2-4, blind search techniques do
not require that these nodes be visited in any particular order. Often, 3
however, it is possible to order sibling nodes according to the relative
probability that each sibling is part of a successful path. Although0
ordering nodes in this way would improve the efficiency of undirected I
search, these techniques are not designed to exploit this extra information.
Locally-directed search techniqucs are designed to exploit sibling order
information.

A recent example of a locally-directed search technique (Ginsburg,
1990) is Iterative Broadening (IB). IB proceeds by iteratively performing
depth first search, where on each iteration the number of subnodes visited
is expanded. On the first iteration, only the first subnode of each node is
visited. On the second iteration, the first and second subnode is visited.
On the third iteration, the first three subnodes are visited. And so on. In
Figure 1-4, for instance, the sequence of subnodes visited is: i

Level 1: 1, 2, 5, 11
Level 2: 1, 2, 5, 11, 12, 6, 13, 14, 3, 7, 15, 8, 15, 16,

returning the solution path 1-->3-->8-->16. 3
The performance of TB depends heavily on the quality of the

ordering information and the density of goal nodes in the state-spacen
graph. For many problems, however, it represents a significant
improvement over blind search.

1.1.2.3 G(lobally-directed Search

Locally-directed search exploits order information on sibling nodes to
guide search. Globally-directed search, on the other hand, uses ordering
information that applies to all open nodes. This is achieved by applying a
function (F) to each open node and then always expanding the open node
with the lowest f'-value. As long as the number of nodes with an f'-value
less than a goal node is finite, this procedure will eventually find a path to I
the lowest F-valued goal node.

1
I

1 0 BDMVSQ-91-0742-TR I

I- BDM INTERNATIONAL, INC.

O Obviously the efficiency of globally-directed search depends on the

f'-values assigned to each node. A common approach is to assign a cost
value to each arc and then to define I' is as follows:

- g(n) = cost of cheapest path from the start node to node n,

,*(n) estimate of cost of cheapest path from start to node ii
= estimate of g(n),

h(n) = cost of cheapest path from node n to goal node,

h*(n) = estimate of h(n),

I f*(n) g*(j,) + h*(n).

f n) 1t'(ni) if ni is a parent of n and f'(ni) > f*(n),
f*(n) otherwise.

I III words the F-value for any node is the cost to iet to ihat node plus
an estimate to complete, with the added requirement that the f value of a
node must _always be greater than or equal to the f-value of the parent. If
the estimate-to-complete (h*) never overestimates the true cost to
complete, then globally-directed search will always find the lowest cost
path from the start node to the goal node.

When f' is defined as above, the search procedure is call the A
algorithm. If the h* metric is always an underestimate, then the search
proccdure is called A (Pearl, 1982).

II T1o relate this to the mission planning problem, consider Figure 1-5.
Figure 1-5 is the same as Figure 1-4 except that the arc cost and the h1*
values are shown (h* values are in brackets next to each node). Consider
each node to be a map location (e.g., way-point) where the objective is to
go from the initial locations (,tart node) to a goal location (e.g., one of two
alternative targets) while minimizing lethality. Along each arc is an

S estimate of the lethality for that section of the route. A globally-directed
searcn procedure would vi'it the nodes in the following order,

I1. 2. 3. 8, 4. 9, i0

and would return the ':'-->4-->9-->16

I1BD VSQ-91-0742-TR

BDM INTERNATIONAL, INC.

I
I

/6 4
I

3 4
1611

34 3 6

JL10 181 [81 121 12(0

6 2 3 1 1 431 2 6I

"
~I

I
11~12 13 14 15 1) 171

C50 \10/ 30 25 to]~10 20

Figure 1-5: A State Space Graph - Weighted

1 2
BDMVSQ-91-0742-TR

I
I

BDM INTERNATIONAL, INC.

One limitation of globa!ly-directed search procedures is that they cannot
be applied to large search problems. A globally-directed procedure must
maintain a list of all paths generated during search. Consequently, every
node generated must be maintained. Even for toy problems, like the 8-
puzzle, thousands of nodes may be generated. For large problems, the
number of nodes generated will usually exceed the memory limitation of
the host hardware.

I For large problems, an alternative procedure is available -- iterative
deepening A* (Korf, 1985). Iterative Deepening A* (IDA*) works like
iteraLive deepening, but instead of performing a depth-first search at
increasing depths, IDA* performs a depth-first search at increasing f'
levels. In Figure 1-5, for instance, IDA* would visit the nodes as follows:

Level Nodes Searched max f'
1 1 5
2 1,2.3 8
3 1.2,3,8,4,9.16 9

I Note that the max f' value for the next level is set to the minimum f
value of any node that was generated but not expanded. IDA* is not really

I a globally directed procedure since it does a blind depth-first search
within each f level. However, since it uses f to select levels it will always
find the lowest f-valued path. Furthermore, because it uses blind depth
first search, it only needs to maintain the current path in memory.
Consequently, it is suitable for large problems. On the other hand, the
number of nodes searched may increase, by an order of magnitude over
A*. This is because it is easy to construct pathological state-spaces where
each increase in the max f' value adds only one node to the search.
However, such state-spaces may be pathological. Consequently, in practice
IDA* may often be the preferred procedure for large search problems.

1.1.2.4 Other Search Procedures

I As a group, the search procedures described above are often referred
to as heuristic search procedures. Heuristic search procedures are
distinguished by the fact that they are neither goal driven or knowledge
intensive. In a goal dri en search, the selection of nodes to expand is
determined by identifying subgoals and finding state change operations
that move toward achieving those subgoals. Goal driven search is
gencially knowledge intensive. It takes a substantial amount of domain
knowledge to select appropriate subgoals and control search.

1 3 BDMVSQ-91-07d2-TR

BDM INTERNATIONAL, INC. U

As a search procedure subgoaling has some advantages. It makes it
possible to decompose a problem into a set of independent or sequential
subproblems. Breaking a problem into subproblems will substantially
decrease the amount of search required. It also makes it possible to utilize

dependency-directed backtracking. When a search path results in a dead j
end, and backtracking is required, it may be possible to use the subgoal
information to determine how far to backtrack before continuing the
search. There is however no guarantee that this procedure won't skip over I
a desired solution path.

As will be seen in the next three chapters, most Al planning systemsI
combine a heuristic search procedure with some form of goal driven

search. 3
Also, it should be noted that there are a variety of search procedures

that exploit probabilistic knowledge as to which nodes will lead to a goal 3
state (e.g., Pearl. 1984). In mission planning/associate system problems,
this knowledge is not generally available. Consequently, these procedures
are not reviewed here.

1.2 Relevance to Associate Systems Technology

1.2.1 Plan Generation

A mission planning problem can be viewed as a problem in state-
space search. To do this one must specify a vector of variables (location,
altitude, fuel level, threat exposure...) that identifies all factors relevant to
calculating a route from the aircraft's current location. This state-space
would be very large, and it is unlikely that an undirected or locally-
directed search procedure would be adequate. A globally directed search
procedure, such as A*, may be feasible if it is based on a good estimation
function. Recall that with a globally directed search procedure the number
of nodes searched and amount of memory required increases substantially
as the accuracy of the heuristic estimate decreases. A poor heuristic
estimation function would result in far too many open nodes for efficient
processing. -

If one is willing to give up on finding the optimal solution (e.g.,

lowest cost path), it is possible to substantially increase the efficiency of

search. For instance, the processing time of the A* algorithm can
sometih•cs be reduced dramatically by allowing the h* function to be an

1 4 BDMVSQ-91-0742-T'R I

BDM INTERNATIONAL, INC.

over estimate (Freeman, 1991). (For example, let f*(n) = g*(n) + w(h*(n))
where w is a multiplier greater than 1.) Alternatively, one can decompose
the problem into a set of smaller subproblems (e.g. pre select several way
points) and find optimal solutions to each subproblem. As Korf (1988)
noted, this can lead to an order of maenitude reduction in search time.

In mission planning applications, we have noted two basic
;,pproaches to simplifying the complexity of the search space.

Reduce number of state-space variables - Efficiency can be
improved, simply by ignoring some of the variables in the state-space
representation. By defining a few aggregate variables, and ignoring others,
an efficient globally directed search procedure can be implemented. An
example of this is found in Lockheed's path planning system used in the
Pilot's Associate. In this system. the state-space is defined in terms of justIa few simple variables (fuel level and visibility).

Another examgle is the path planning system used to generate the
mission plans for thet F-117A (Mitchell, 1991). Here, once again, a globally
optimal search procedure was applied to a subset of the relevant plan
variables.

In principal, this appoach can sometimes generate poor paths that a
more inclusive state-space representation would not. However, caieful
engineering of the system usually minimizes the frequency of such events.
In addition, in some of these systems the human operator has the
opportunity to review and modify these plans.

Aggregate state-space representation - Rather than simply ignoring
some variables, it is sometimes possible to preprocess the state-space into
a more aggregate representation that contains fewer states. One example
of this is found in the visibility graph approach to path planning (Meng,
et.al., 1991; Silbert, 1991). In this approach, a map is processed to identify
a set of distinct "objects" that should be avoided. These objects are then
modeled as polygons, where the edges of eazh polygon defines a path
around the object. The vertices of each polygon now define a set of "way
points", and the cost of moving from one way point to another line-of-sight
way point is preconmputed. Path planning is defined :is a problem of
finding a minimum cost path through a sequence of way points. If the
number of domain objects is not exccssi,'e, then this representation
significantly reduces the complexity of the search space.

1 5 13DMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

1.2.2 Plan Modification I
For heuristic search there is no mechanism for performing plan

modification as opposed to replanning. Replanning simply requires
invocation of the search procedures with the new state. Plan modification
requires that the new plan be a minimal modification of the original plan.
Within the state-space search paradigm there is no mechanism for
implementing this "minimal modification" concept.

1.2.3 Real-time Planning

Heuristic search procedures are not designed for real time planning.
Although these procedures may be very fast, they are not designed for
anytime problem solving. This is particularly true of undirected and
locally-directed search procedures, since they have no metric for assessing
whether or not a partial path is promising. On the other hand globally
directed search procedures are based on a metric for assessing _:,1pected 3
cost of any partial path. It is possible to interrupt search ;uid request
information on the most promising partial path so far. An exai:.PFe of this
is found in Korfs approach to real-time path planning (Korf, 1987. Korfs
planner iterates through the following sequence

1. Execute a depth-limited ID * search from current state.

2. Select the path that minimizes total expected cost.

3. Execute the first action on the path selected.

4. Define the new state as the current state.

5. Go to l.

Using this procedure, the agent's next actions continuously follow the most
promising path. 3

!
3 Unfortunately, this approach is not always rcliable. This is because the h!*

function (estimated distance to goal) may not be very sensitive to ihe true function

(estimated distance to goal) many not bc very sensitive to the true distance to the goal
until search reaches a node that is very close to the goal. As Korf (1988) himself has-
noticed, in some domains the h* value is nearly constant for all nodes except those
very close to the goal node. This suggests that during most of the search process good
and had paths are not distinguishahle.

1 6 BDMVSQ-91-0742-TR I

BDM INTERNATIONAL, INC.

In the section on Planning and Uicertainty Management we will
introduce a general mechanism for converting procedures such as A* into
anytime problem solvers. As we show there it is possible to interrupt the
search process and request not only the best path so far, but also a

i probability estimate that the current best path is a "good" path.

Finally, it should be noted that the visibility graph approach
described above is amenable to real-time planning/replanning problems.
By precomputing the shortest path between various regions, the planner
can use these precomputed paths to quickly select alternative routes. A
discussion of this approach can be found in Meng, ct.al. (1991) and Silbert
(1991).

II
I
I
I
I
I
I
I
I
I
i 1 7 BDMVSQ-91-(C742-TR

BOM INTERNATIONAL•,INC. I

I

I
I-

I
I-
I-

I . .

i

18BDMVSQ-91-0742-TR •-:-

i . .

BDM INTERNATIONAL, INC.

CHAPTER2

CLASSICAL PLANNING:
USING SUBGOALS TO CONTROL SEARCH

I Beginning in the late 1960's a series of planners where developed
that have since come to be known as the classical planners.' The classical
planning approach is similar to Planning as Heuristic Search paradigm with
two significant differences:

SThey all use the same approach to defining actions and state-
spaces, and

i 2) Search through the state-space is goal-driven.

The principal planners in this lineage are described below.

I 2.1 General Problem Solver (GPS)

One of the earliest automated planners was a system called the
General Problem Solver (GPS). Although GPS is not generally considered to
be a classical planner, it is widely regarded as the precursor to this line of
planners. GPS used a search procedure call means-ends analysis (Newell
and Simon, 1963). As applied to planning problems. means-ends analysis
begins with a description of the initial state, a desired goal state, and a set
of state-change operators. The principle operation of GPS is to iterate
through the following steps. Beginning with the initial state, GPS:

1. Compares the present state with the goal state to generate a
difference list.

2. IF the difference list is empty,
THEN exit with plan.

3. Select a state-change operator that has a consequence the
removal of the first difference on the difference lists,

Ii

IThere is no clear definition of a classical planner. Although the planners
describcd in this section are usually considercd classical, so eic would also consider
the planners described in Chapicr 3 as also hclonging to 1hC classical planning
tradition.

1 9 BI)MN1VSQ-9l-0742-TR

BDM INTERNATIONAL, INC. H
4. IF no operator is found, U

TIEN remove last operator added to plan,
reset the difference list, and
go to 3 (to select a new operator).

5. IF the operator can be executed,
THEN add it to the plan,

update the state description, and
go to 2.

6. IF the conditiop' necessary to execute the operator are not
contained in the current state,
THEN add these conditions to the difference list and

go to 2.

Whenever stcp 2 finds no differences, GPS terminates and returns
the sequence of state-change operators it applied. This sequence is the
plan. When step 3 fails to find an operator, then GPS will backtrack on the
sequence of operators to an earlier state, find a new ,-cprator to apply, and I
continue processing. In short, GPS is a depth-first state space search
procedure where sibling nodes are ordered according to whether or not
they remove an element from the difference list.

2.2 Stanford Research Institute Problem Solver (STRIPS)

STRIPS is generally regarded as the first of the classical planners.
STRIPS was based on GPS, but some additional assumptions were made
about how states and state-change operators are represented (Fikes and
Nilsson, 1971). In STRIPS states are described as a list of propositions
which are sentences of the form BLOCK(A), ON(A,B), CLEAR(C), etc. (See
Figure 2-1). STRIPS state-change operators define different classes of
actions. Each operator is composed of:

1. A precondition list that lists ail propositions that must be
contained in the state description before the operator can be
executed,

2. an add list that lists the propositions that are added to the state
descripticit -zn thz operator is applied, and

2 0 BDMIVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

U 3. a delete list that lists the propositions to be deleted from the
state description when the operator is applied.

B ON(C,TABLE)
ON(A, TABLE)

A C ON(B,A)

CLEAR(C)

TABLE CLEAR(B)

CLEAR(TABLE)

STATE STATE DESCRIPTION

Figure 2-1: Example of State Description

Figure 2-2 shows some examples of state-change operators.

In STRIPS a planning problem is defined by a state description of the
initial state, a list of propositions that must be true of the goal state, and a
list of STRIPS operators. (Planning problems defined in this way will be
referred to as STRIPS problems.) STRIPS plans by searching for a
sequence of state-change operations (actions) that will transform the initial
state into a goal state (see Figure 2-3 for an example).

It is important to note that each new state in STRIPS is calculated by
adding and deleting the propositions listed in the add and delete lists of
the state change operator. Nothing else changes. In effect, STRIPS
assumes that the only relevant consequences of an action are those that
are always associated with that type of action. There are no side effects.
This assumption is prevalent in automated planners and is called the
STRIPS Assumption.

2 1 BDMJVSQ-91-0742-TR

BDM INTERNATIONAL, INC. II

II
II
I

Precondition Tff Y # TABLE
List Y o TABLE Y z I

"ON(X,Y) ON(X,Y)

t~CLEACLEAR(X) I
CLEAR(Y)

Operation NEWTOWER(X) MOVE(XY)

Delete List - ON(X,Y) - ON(XZ)
- CLEAR(Y)

Ad Ls CLEAR(Y) CLEAR(Z)

Add List ON(X,TABLE) ON(X,Y) U

Figure 2-2: Example of STRIPS Operations

22 BDMIVSQ-91-0742-TR

I 3DM INTERNATIONAL, INC.

I
C , TABLE

I C :A
ON(B,A) ON(C,TABLE)

ON(C,TABLE) CLEA.R(B) ON(A,TABLE)
ON(A,TABLE) CLEAR(C) CLEAR(B)
ON(B,A) 3 MOVE(B,C))p ON(B,C)
CLEAR(C) - ON(B,A) CLEAR(A)

I CLEAR(B) - CLEAR(C)
CLEAR(TXBLE) ON(B,C)

I CLEAR(A)

I B $ I'ABLE
B - TABLE
ON(A,TABLE)
CLEAR(A) ON(CTABLE
CLEAR(B) ON(CT

I •MOVE(A,B) ON(AB,)
- ON(A,TABLE) ON(A,B)
- CLEAR(B) CLEAR(A3LE)
ON(A,B)

CLEAR(TABLE)

I
I
I
I
I

Figure 2-3: Plan to Achieve ON(A,B) ,ON(BC)

1 23 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC.

STRIPS generates plans by maintaining a stack of goals and actions.

Let Stack be the stack maintained by STRIPS, G be the list of goals to
achieve, and S the initial state.

1. Set Stack to G,
Plan to nil.

2. IF Stack is empty,
THEN exist with PlanE•SE select first element (e) of Stack.

3. IF e is an action, I
THEN mark current status of S, Stack and Plan as

backtrack point,
add e to Plan ,
set S to update(e,S).

4. IF e is a goal and e is contained in S
THEN pop e from Stack.

5. If e is a conjunction of goals and not contained in S
THEN individually add each of the subgoals of e to

Stack.

6. IF e is an individual goal and not contained in S I
THEN find an action A which has e as a consequence

has has not been previously tried.
7. IF A is nil

THEN backtrack and go to 2.

8. IF 4L is not nil, H
THIEN add A to Stack,

add as a conjunction of goals the pre-conditions
of A to Stack,

set A to nil,
go to 2.

To illustrate STRIPS operations, consider again problem in Figure 2-1. I
The initial stack begins with just the initial goal (ON(A,B) & ON(B,C)) and
via step 5 adds each part of the conjunction to the stack.

I
2 4 BDM./VSQ-9 i-0742-TR

BDM INTERNATIONAL, INC.

ON(A,B) & ON(B,C)
ON(A,B)
ON(B,C)

SFRIPS checks to see if the bottom goal is true in the current state.
It isn't. STRIPS then searches for an operator to instantiate that (after
instantiation) has the bottom goal (ON(B,C)) on its add list. The instantiated
operator and its preconditions are added to the stack.

ON(A,B) & ON(B,C)
ON(A,B)
ON(B,C)
MOVE(B,C)
ON(B,A) & CLEAR(B) & CLEAR(C)

The current state contains CLEAR(C), CLEAR(B) and ON(B,A), su the

conjunction of these goals is popped from the stack. MOVE(B,C) is then
popped and added to an action list and a new current state is computed.
Since ON(B,C) is on the add list of MOVE(B,C), ON(B,C) will be true in the
new current state, so it is popped. ON(A,B) is not satisfied, a new action is
added to the stack. Here we choose MOVE(A,B). This results in the stack:

ON(A,B) & ON(B,C)
ON(A,B)
IMOVE(A,B)
ON(A,TABLE) & CLEAR(A) & CLEAR(B)

CLEAR(B), CLEAR(A), ON(A,TABLE) and the conjunction of these three
are all contained in the current state. Consequently, the conjunctive goal is
popped from the stack. MOVE(A,B) is popped from the stack and added to
the action list. ON(A,B) is then popped from the stack. Finally, ON(A,B) &
ON(B,C) is checked. Since MOVE(A,B) does not have ON(B,C) on its delete
list, the new current state will still contain ON(B,C). Consequently, ON(A,B)
and ON(B,C) is satisfied. Since the stack is now empty, the goal has been
achieved. The action list {MOVE(B,C), MOVE(A,B)) becomes the plan.

The reader may have noticed that in the above example there was
usually more than one choice for an operator to add to the plan. Also the
ordering of the ON(A,B) and ON(B,C) subgoals was fortuitous. If any of
these had changed, the resulting plan would have included some
unnecessary steps. In general, the quality ot a plan generated by a STRIPS
like sys'tcm depends on ! set of heuristics for ordering subgoals and
selecting actions.

2 5 BDMA'SQ-91-0742-TR

I
BDM INTERNATIONAL, INC.

Although STRIPS works reasonably well, there are a some problems I
that STRIPS can not solve properly. The most famous of these is the
Sussman Anomaly, shown in Figure 2-4. In this problem, the two goals
ON(A,B) and ON(B,C) can not be serialized. A plan which solves these goals
in sequence will inevitably include unnecessary actions. For instance, if
the goals are ordered ON(B,C) and ON(A,B), then STRIPS will likely generate I
the plan

MOVE(B ,C) I
-->NEWTOWER(B)

-->NEWTOWER(C)
-->MOVE(A,B)

-->NEWTOWER(A)
-->MOVE(BC)

-->MOVE(A,B).

Inspired by this and other problems. a series of Al planners were
developed that are generally known as the classical planners. Virtually all
of these planners used STRIPS-like state-change operators and made the
STRIPS assumption.

I

C I
I-

A B

TABLE

I
I

Figure 2-4: The Sussman Anomaly

2 6 BDM/VSQ-91-0742-T"R

BDM INTERNATIONAL, INC.

2.3 Regression

IWaldinger (1977) explored the technique of Regression. For any
proposition P and action A, the regression of P over A (Regress[P,A)j
specifies the conditions that must be true prior to executing A in order for
P to be true after executing A. For instance,

I Regress [ON(A,B),MOVE(A,B)] = Clear(A) & Clear(B) & ON(A,z)

which are just the preconditions of MOVE(A,B). Note that regression does
not presume that P and A are fully specified. For instance.

iRegress[Clear(x),MOVE(A.y)] = (Clear(x) & x=/y) or (ON(A,z) & x=z).

Using Regression, it is possible to specify how the goals in the Stack
relate, thereby allowing the planner to determine where in the stack an
action can be inserted. Consider how regression can be used to solve. the
Sussman anomaly. Beginning as in STRIPS, the planner generates the

I stack:

ON(A,B) & ON(B,C) a
I ON(B,C) a

ON(A,B) a
MOVE(A,B) b
CLEAR(A) b

CLEAR(B) b
ON(A,z) b

i Unlike STRIPS, however, sets of goals and actions in the stack are
labeled as belonging to various protected sets. A protected set specifies a
set of goals that must all be true when the entire set is complete. For

I instance. CLEAR(A), CLEAR(B) and ON(A,z) are part of the protected set b.
A protected set is determined by regression. For instance, set b is equal to

I Regress lON(A,B),MOVE(A,B)].

The stack is processed by sequentially moving through the stack
until an unachieved goal is found -- in this case CLEAR(A). An action and
its precendition are inserted into the stack prior to the goal, as long as the
inserted action does not undo any previously achieved goals in the
protected set in which the goal has been inserted. Continuing with the
example, the planner now inserts NEWTOWER(C). This results in the

i following stack:

2 7 BDMiVSQ-91-0742-TR

BDM INTERNATIONAL, INC. I
ON(A,B) & ON(B,C) a I
ON(B,C) a

ON(A,B) a I
MOVE(A,B) b
CLEAR(A) b
NEW[OWER(C) c
CLEAR(C) c
ON(CA) c I
CLEAR(B) b
ON(A,T) b

Note that the insertion of NEWTOWER(C) only interrupted set b. Since

Regress(CLEAR(B),NE3WTOWER(C)]=CLEAR(B), and I

Regress[ON(A,T),NEWTOWER(C)] =ON(A,T),

CLEAR(B) and ON(A,T) will still be true after NEWTOWER(C).

Continuing this example further, suppose the planner now tries to
insert MOVE(B,C) as shown below:

ON(A,B) & ON(B,C) a
ON(B,C) a

--------------------------------- OEBC
< -- MOVE(B,C)I

ON(A,B) a CLEAR(C)
MOVE(A.B) b CLEAR(B)
CLEAR(A) b ON(B,T)
MEWTOWER(C) C
CLEFR(C) c
ON(C,A) c
CLEAR(B) b
ON(A,T) b.

Before it can insert this action, it must check to see if MOVE(B,C)
impacts ON(A,B). However, RegressIMOVE(B,C),ON(A,B)] = NIL. There is no
circumstance in which GN(A,B) will be true immediately after the action
MOVE(B,C) is executed. Consequently, MOVE(B,C) can not be inserted into
any stack where ON(A,B) is protected and not reestablished after the

MOVE(B,C) action. Since MOVE(B,C) is the only action that has ON(B,C) as a
consequence, the current stack can not be completed.

28 BDM/VSQ-91-0742-'1R I

BDM INTERNATIONAL, INC.

I
To repair this problem, the planner can now reorder the goals in the

stack to avoid the problem that lead to the current dead end. Since the
attempt to achieve ON(B,C) impacted the protected goal ON(A,B), the

I planners re-orders ON(B,C) and ON(A,B). Specifically, it reorders the stack
so that ON(B,C) occurs prior to the action that achieves ON(A,B). This gives
us the stack:

ON(A,B) & ON(B,C) a
ON(A,B) a
MOVE(A,B) b
ON(B,C) a

CLEAR(A) b
NEWTOWER(C) c
CLEAR(C) c
ON(CA) c
CLEAR(B) b
ON(A,T) b.

Now when we insert the action MOVE(B,C) we get the stack:

ON(A,B) & ON(B,C) a
ON(A,B) a
MOVE(A,B) b
ON(B,C) a
MOVE(B,C) d
CLEAR(C) d
CLEAR(B) d
ON(B,T) d
CLEAR(A) b
NEWTOWER(C) c
CLEAR(C) c
ON(C,A) c
CLEAR(B) b
ON(A,T) b,

where we can confirm through regression that none of the actions impact
any of the previously achieved goals in the protected set. This gives us the
final plan NEWI'OWER(C)-->MOVE(B,C)-->MOVE(A,B).

2 9 BDM/N'SQ-91-0742-TR

BDM INTERNATIONAL, INC. I
2.4 Nonlinear Planning

Another enhancement to STRIPS that is that of nonlinear planning
(Sacerdoti, 1977). Nonlinear planning is based on the idea that the actions
in a plan do not need to be fully ordered. Furthermore, a planner should
not impose an ordering on a set of actions unless it needs to. For instance,
in solving the Sussman Anomaly, a nonlinear planner might proceed by
initially splitting the two goals and finding plans to achieve each
individually. This is shown below.

NEWTOWER(C) ---> MOVE(A,B) I
MOVE(B,C).

Upon examining this plan. the planner dis, rs a p,'oblem. Namely
that CLEAR(B), which is a precondition for N1OVLkj,C), is oi, the Delete list 3
of MOVE(A,B). (A mechanism for discovering this type of problem is
discussed in the next section). Consequently, this plan will not work if
MOVE(A,B) occurs before MOVE(B,C). To resolve this problem MOVE(B,C)
must occur before MOVE(A,B), so the plan is constrained to satisfy this
ordering:

NEWTOWER(C) ---> MOVE(A,B)

MOVE(B,C).

However, this is still not satisfactory in as much as CLEAR(C), a
precondition of NEWTOWER(C), is on the delete list of MOVE(B,C).
Consequently, NEWTOWER(C) must be constrained to occur before
MOVE(B,C). This gives us:

NEWTOWER(C) MOVE(A,B) MOVE(B,C).

as the final plan. I
2.5 Hierarchical Planning

Realistically, complex planning problems require that tile planner
separate significant planning factors from details. Initially, a partial plan
is developed that accounts for the significant factors, after which details
are worked out. For instance, in planning a cross country trip, one should

I
3 0 BDM/VSQ-91-0742-TR

I

I BDM INTERNATIONAL, INC.

I first identify the flight to take before worrying about the details of how to

get to and fiorn each airport.

In the Al automated planning literature each level of detail is
referred to as a level of abstraction. Planners that operate by' generatingI plans at decreasing levels of abstraction are called hierarchical planners
(Sacerdoti, 1977). For instance, multiple levels of abstraction can beI defined in a STRIPS problem by assigning priority levels to the
preconditions of an operator. Hierarchical planning then proceeds by
initially generating a plan considering only first priority preconditions,
then inserting steps into the plan to account for second priority
preconditions, again with third priority preconditions, and so on. At each
level of planning the plan generated at the previous level serves as an
outline to which additional actions are inserted.

Levels of abstraction can be defined in other ways as well. In
addition to prioritizing preconditions, one can prioritize the operators
themselves or the operator consequences. Furthermore, operators and
propositions can be defined that are unique to each level of abstraction.
This is common in military planning where the units being planned change
with differing levels of command.

I 2.6 Planning and Learning

Although we do not review it in this document, it is worth noting
that research in the classical planning paradigm has often been associated
with research in automated learning (e.g., Fikes, et.a!., 1977; Minton, 1988).
The objective of this research is generally to improve the efficiency of the
search through the state-space by extracting from previous plans macro-
operators and useful control rules.

I 22.7 Applications to Associate Technology

Mo3t of the early work in Al planning was done as part of the
classical planning tradition. Many of the techniques used by classical
planners (nonlinear planning, hierarchical planning, regression) are

I embedded in the more recent paradigms.

Regarding applications, however, classical planners are not well-
I suited for associate svstems. The limitations of the STRIPS representation

are usually to constricting to make this approach viable. Although there
are some domains for which STRIPS-like action models are heuristically

I 31 BDMIVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

adequate (e.g., Wilkins, 1988), these seems more the exception than the
rule. Indeed, as Chapman (1987) has noted, the STRIPS representation
even has difficulty handling blocks worlds problems where there are

blocks of more than one size.

32 BD~fVS-91-042-I

I BDM INTERNATIONAL, INC.

I CHAPTER 3

I PLANNING AS PLAN REFINEMENT

I The plan refinement approach to automated planning, treats
planning as a process of constraint posting. That is, beginning with an

I unconstrained plan (do anything), a series of constraints are posted until it
can be determined that any further instantiation of the actions specified
consistent with the posted constraints, will achieve the specified goal. This

I approach is also sometimes called least commitment planning.

The plan refinement approach is closely associated with the classical
planning tradition described in the last section. Many of the ideas grew
out of nonlinear planning approach where temporal constraints are only

I posted when necessary. Stefik (1981) developed this idea turther by
developing a planner that operated by posting variable constraints.

Planners in this tradition fall into two groups. The first group
represents a set of planners that address problems that conform to the
STRIPS represent. The second represents planners that are designed to

I handle a broader spectrum of constraints.

I 3.1 TWEAK

Nonlinear planning is an example of least commitment planning. In
this approach, a plan is viewed as a list of constraints and the process of
planning is one of adding additional constraints to the plan. The constraint
posting process is complete when it can be shown that any further
constraints on the actions specified will still result in achieving the goal.

I In Sacerdoti's nonlinear planner constraint posting was limited to
temporal constraints. IHowever, other types of constraints are possible. In
fact, it has been shown (Chapman, 1987) that only three types of
constraints are required to solve STRIPS problems:

I operator insertions specifies an operator the must be executed,

variable constraints restricts the set of possible values for a
Svariable ii an operator, and

I temporal constraints - requires that a pair of operators be executed

I 3 3 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

in a certain order. I
TWEAK (Chapman, 1987) is a planner that operates entirely ,'

constraint posting. TWEAK's processing is based on a plan evaluation
mechanism called the necessary truth criterion. Given the STRIPS
assumption, a plan is guaranteed to solve a STRIPS planning problem if
and only if every goal and precondition satisfies the necessary truth
criteria.

In order to state the necessary truth criterion, we need define the
following. 3

Codesignation - A proposition P codesignates with Q (P==Q) if they
represent the same relation and must have the same values for the
variables. For examples CLEAR(A)==CLEAR(A), x=y implies
ON(A,x)==ON(A,y). On the other hand, x•t y implies
-(CL.EAR(x)=CLEAR(y)).

Asserted-in - A proposition P is asserted in a state s (written asserted-
in(P,s)) if and only if P is true in state s.

Asserts - An action A asserts a proposition P (asserts(A,P)) if P is on the
add list of A.

Denies - An action A denies a proposition P (denies(A,P)) if P is on the I
delete list of A.

Necessarily - Given a list of constraints, necessarily P (written []P) is 3
true if and only if no additional variable or temporal constraints can be
consistently added which would result in -P. For instance, if we begin
with the Sussman anomaly, then the single action plan MOVE(B,C) would
be sufficient to deduce []Es asserted-in(ON(B,C),s). That is, there is
necessarily a state in which ON(B,C) is true.

With the above definition, the necessary truth criterion can be
formally stated as follows. I

[] asscrted-in(Ps)

if and only if

[]3t (t<s) & asscrted-in(Pt) A I

VC I](s<QC)v

I
3 4 BDMI/VSQ-91-0742-TR I

I BDM INTERNATIONAL, INC.

I [](C<t ,
VQ []-dcnies(CQ) v

3W [I(C<W A
I[]W<s) A

DR asserts(W.R) & P==Q --4 Q==R.

where P, Q and R are propositions, C and W are actions, and t and s are
possible states. In words, the necessary truth criterion reads somewhat as
follows: "For any proposition P and state s, P is necessarily true in s if

I I. it is necessarily the case that before s there is a state t containing P,

I II. for any action C, that action

Ila. occurs before t or after s, or

l~b. C never denies P, or

I He. whenever C denies P, there is another action W which

Ilcl. occurs after C and before s, and

Iic2. asserts P.

A plan is labeled successful if each goal is necessarily true in the
final state, and each precondition of each action is necessarily true in the
state in which the action is performed. Whenever a goal or precondition is
not necessarily true in the appropriate state, then a violation of the
necessary truth criterion has occurred.

Using the necessary truth criterion, TWEAK proceeds to solve
I planning problems as follows.

1. Examine current list of constraints for violations of necessary truth
criterion.

I 2. If no violations exist, exit with current constraints as the plan.

3. if a violation exists, find a constraint that removes violation.

S4. If no constraint can te found, backtrack on the constraint last posted

and go to 1.

I 3 5 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

5. If a constraint is found, post the constraint and go to 1. I
"To illh-trate thte operation of TWEAK consider, for one last time, the

Sussman anomaly. TWEAK first checks to sce if the goals ON(A,B) and I
ON(B,C) are contained in the current state. Since they are not, and the plan
is currently null, the necessary truth criterion is violated for both of these
goals. This results in adding two step constraints and several variable
constraints to the constraint list.

CONSTRAINT TYPE CONSTRAINT
STEP INSERTION MOVE(x 1 .y1)
VARIABLE CONSTRAINT x 1 =A
VARIABLE CONSTRAINT y 1 =B

STEP INSERTION MOVE(x2,y2)
VARIABLE CONSTRAINT x2=B
VARIABLE CONSTRAINT y2=C

The current plan is shown in Figure 3-1. Note that the two actions
are unordered. The current plan is not guaranteed to achieve a goal state
because some of the preconditions are not necessarily true. For instance,
ON(A,zl) is not necessarily true simply because zl could be instantiated to
an object other than TABLE. Similarly for ON(B,z2). Also CLEAR(B) is not
necessarily true because there is an action MOVE(A,B) which denies
CLEAR(B), that could be executed prior to the situation in which CLEAR(B)
needs to be true. This suggests adding three additional constraints as
shown below: U

YI # TABILE C * TABLE

YI # Z1 C Z2 I
ON(A.ZI) ON(B,Z2)

"CLEAR(A) CLEAR(B) I
CLEAR(B) CLEAR(C)

MOVEA,B) MOVE(B.C) 3
. oN(A,Z) - ON(B,Z2)

C-L .\R(B) " CLEAR(C)

CLEA-R(Z1) CL-LR(Z2)

ON(A.E3) ON(B,C)

Figure 3-1: First Partial Plan

3 6 BDMIVSQ-91-0742-TR I-

I BDM INTERNATIONAL, INC.

I CONSTRAINT TYPE CONSTRAINT 1

VARIABLE .1

VARIABLE yl=B
S17EP INSERTION MOVE(x2,y2)IVARIABLE x2=13
VARIABLE v2=-

VARIABLE zl=TABLE

VARIABLE z2=TABLE

TiEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl).

The current plan is now shown in Figure 3-2. It is still not complete

I .nce CLEAR(A) is still not satisfied, Since no additional variable or

temporal order constraints can be added, a new step is added to the plan

that asserts CLEAR(A). This new step must occur prior to the situation in

wh~ich CLEAR(A.) is needed. '1 his :ee!ults in the following constraint list.

B --/ TABLE C 96 TABLE

B 0 TABLE C 0 TABLE

ON(A,TABLE) ON(B, ABLE)

'CLEAR(A) CLEAJ((B)

5CLEAR(B) CLEAR(C)

MOVE(A,B) MOYM0rE(B,C)

-ON(A,TABLE) ON"(BTAILE)

I-CLEAR(B) -LARC

5 CLEARJ(ABLE) CLEAR(TABLE)

ON(A,B) ON(B,C)

Figure 3-2: Second Partial PMan

/ RDMIVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

CONSTRAINT TYPE CONSTRAINT
STEP p4SERTION MOVE(x l,y l)

VARIABLE xl=A
VARIABLE yl=B
STEP INSERTION MOVE(x2,y2)
VARIABLE x2=B
VARIABLE y2=C
VARIABLE zl=TABLE
VARIABLE z2=TABLE
TEMPORAL ORDER MOVE(x2,y2) before MOVE(x 1,y 1)

STEP INSERTION NEWTOWER(x3)
VARIABLE x3=C
VARIABLE z3=A
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x ,v 1).

The current plan is shown in Figure 3-3. There is one final problem.

The precondition CLEAR(C) is denied by the action MOVE(B,C).

Cnns-equently. MOVE(B.C) must occur before CLEAR(C) is needed. This

results in the final constraint list:

B V TABLE C # TABLE
B 0 TABLE C # TABLE

A - TABLE QN(A,Ti1BLE) ON(B,TABLE)
ON(C,A) CLEAR(A) CLEAR(B)
-CLEAR(C) CLEAR(B) CLEAR(C)

NEWTOWER (r MOVE(A,B) M1-VE(B,C

- ON(C,A) - ON(A,TAB-TE) - ON(B,TABLE)
CLEAR(A) CLEAR(B) - CLEAR(C)

ON(C,TA3LE) CLEAR(TABLE) CLEAR(TABLE)
ON(A,B) ON(B,C)

Ficure 3-3: Third Partial Plan

3 8 BDM/VSQ-91-0742-TR

- BDM INTERNATIONAL, INC.

I CONSTRAINT TYPE CONSTRAINT
STEP INSFRTION MOVE(x I,y 1)
SVARIABLE xl=A

VARIABLE y'l=B
STEP INSERTION MOVE(x2,y2)
VARIABLE x2=B
VARIABLE y2=C
VARIABLE zl=TABLE
VARIABLE z2=TABLE
TEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl)
STEP INSERTION NEWTOWER(x3)
VARIABLE x3=C
VARIAI,LE z3=A

I TEMPORALORDER NEWTOWER(x3) before MIOVE(xl.l)

TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2.v2).

I The final plan is shown in Figure 3-4.

3 Note that the performance of TWEAK depends on the selection of

constraints to add to the plan. In the above example, we fortuitously

selectud the best constraint to add at each choice point. In general the

S quaiity of the plans generated by TWEAK will depend on the heuristics for

selecting among alternative possible costraints.

I

1B € TABLE C .# TABLE

B # TABLE C - TABLE

A F TABLE ON(A,TABLE) ON(B,TABLE)

ON(C,A) CLEAR(A) CLEAR(B)3 CLEAR(C) CLEAR(B) CLEAR(C)

Ft 7 jOWNER (C) imp. MNOVE(B,C) ~ MOVE(A,B)

- ON(C,A) - ON(A,TABLE) ON(B,TABLE)

CLEAR(A) - CLEAR(B) - CLEI.M(C)
ON(C,TABLE) CLEAR(TABLE) CLEAR(TABLE)

ON(A,B) ON(BC)

Figure 3-4: Final Plan

39 BDM/VSQ-9I-0742-TR

BDM INTERNATIONAL, INC. m

In some ways TWEAK is the culmination of the line of rT'earch in
classical planners. This is because TWEAK satisfies the following property
(Chapman. 1987). m

Property I: For any STRIPS problem, TWEAK will find a plan in finite
time if one exists If no plan exists, TWEAK will either return with noU
solution or will continue processing.

Furthermore, for STRIPS problems in general one can show the following m
property.

Property 2: There does not exist a procedure which is guaranteed to
terminate in finite time for all STRIPS problems without a solution, yet
still be guaranteed to find a solution if one exists.

In other words, from a decidability perspective, no planner can
improve on TWEAKs performance. Although there are other planners that

are more efficient than TWEAK (e.g., McAllester and Rosenblitt, 1991),
fundamental improvements are not possible.

3.2 Context-Dependent Consequences

One of the principle criticisms of planners designed to handle STRIPS
problems is that the add/delete model of action consequences is unrealistic
and severely constrains the class of problems to which these planners can
be applied. The main problem is that add/delete lists are context
independent. An action has the same consequences no matter what
situation the action is executed in. As a result, add/deiete lists are
sometimes difficult to specify. Consider, for instance, a blocks world with
blocks of several different sizes. In this domain, the consequences of
MOVE(A,B) depends on the size of blocks A and B and the amount of free
space initially on block A. In short, the consequence of MOVE(x,y) is a
function of the input situation and cannot be specified with a context
independent add/delete list.

Also, simple add/delete list make it difficult to plan in multi-agent
environments, where the consequence of an action depends on the actions
simultaneously being pursued by other agents.

To overcome these limitations, several researchers have extended 3
the classical and nonlinear planners to incorporate context-dependent
consequences. Formal thery development (e.g., Pckiaaul!, 1988) has

BDMIVSQ-91-0742-TR

I BDM INTERNATIONAL, INC.

I resulted in the specification criteria that are comparable to the modal truth
criterion but are applicable to operators with context-dependent

i consequences. Unfortunately, when context-dependent effects are allowed,
the problem of determining whether a proposed plan violates these
criteria is no longer decidable. Consequentially, even if a plan exists a

I planner that allows context-dependent consequences can not be
guaranteed to terminate with a solution.

I Implemented planners with context-dependent effects take a more
practical approach. The most well-known example is Wilkin's (1988)
System for Interactive Planning and Execution (SIPE). In SIPE, a
predetermined set of context-dependent effects are calculated as needed.
This approach is not guaranteed to generate sound plans, but is according
to Wilkins "heuristically adequate." It is unlikely that SIPE will generate a
plan where an uncalculated context dependent effect makes the plan

i unsound.

It is important to note that both Wilkins and Pednault make what
Wilkins calls the Extended STRIPS Assumption. This assumes that the only
things that change as a consequence of an action are the direct
consequences of that action (e.g., added and deleted propositions), and

I indirect consequences that can be deduced as having changed. That is, any
statement P that was true prior to executing an action is assumed to be
true after thV action is executed, unless it can be deduced that it is possibly

I false.

i 3.3 Generalized Constraint Processing

The general idea of plan refinement is that the planner posts
constraints until it is satisfied (by some evaluation criteria) ,'-.at any
specific plan that is consistent with all posted constraint will achieve the
goal state. This general strategy is not limited to domains satisfying the
STRIPS assumption, but can be applied to any domain where constraints
can be specified. Although this approach to planning has not been
articulated as an independent paradigm, there is a great deal of theoretical
and applied work that follows this perspective. This work includes the
following.

Constraint Reasoning - There is a growing literature directly addressing
constraint satisfaction problems (Mackworth, 1987). These systems
accept as input a set ot variable constraints and attempt to prove the

co nisiste nlcy or incon-Zistency of these constraints. Often consistency

4 1 BDMN/VSQ-91-0(742-TR

|
BDM INTERNATIONAL, INC. m

proofs are achieved by finding specific values that will satisfy all Ii

constraints. !-
Temporal Constraint Reasoning An important class of constraints deals
with temporal variables. Here the objective is to determine if a set of
temporally ordered statements (e.g., E1 before E2, E2 starts after 3:00, im

E1 ends after 2:30) is consistent. Here the approaches differ
depending on whethcr they deal with qualitative constraints on time •
intervals (e.g., Allen, 1983; Ligozat, 1991), quantitative constraints on []
time points (e.g., Dechter, et. al., 1989), or some combination of
qualitative and quantitative constraints (e.g., Kautz, It. and Ladkin, P., i "

1991). In either case these techniques are emerging as a powerful tool l
for reasoning about the temporal consistency of a proposed plan. !
Temporal Data Management As described by Dean and McDermott
(1987) Temporal Data Base Management Systems (TDMBS) go beyond i
temporal constraint reasoning. They also provide some non-monotonic II
temporal infcrencing. For instance, after asserting that proposition P1
became true after action AI c':,:urred, a TDBMS would "assume" PI [] •,
remained true uxttil some other event occurs that would make PI
possibly false. This allows the TDBMS to makc stronger dcductions than
are warranted by simple temporal constraint reasoning. For instance, i

from the statements: i

TRUE(P ! ,t) & OCCURS(E 1 ,t) --> TRUE(P2,t+ I), I

TRUE(P 1 ,T1),
OCCURS(El ,'1"2), !

T2>TI,

a TDBMS could deduce TRUE(P2,T2+I) because it had no reason to •
deduce that between times T1 and T2 the proposition P1 might become I!

false. !
Temporal Data Management aad Reason Maintenance--In addition to
non-monotonically jumping to conclusions, tile TDBMS must also be able II
to retract these infeasible inferences. In the above example, for I
instance, if the TDBMS later learns
OCCURS(E2,T3) I

OCCURS(E2,t) --> -TR UE(P 1 ,t+ 1), !
!

4 2 BDM•'SQ-O 1-0742-TR !

BDM INTERNATIONAL, INC.

I then the TDBMS should retract the deduction TRUE(P2,12+I) because T3
may be after TI but before T2.1 To achieve this, the TDBMS needs to

I incorporate a reason maintenance capability to keep track of the
justification for each non-monotonic conclusion. Dean and McDermott's
TDBMS had some reason maintenance capability. Recent work in this
area (Hamscher, 1991; Goldstone, 1991) have further developed the
relationship between temporal constraint reasoning and reason

I maintenance systems.

In addition to the theoretical work, the plan refinement approach isSalso found in a number of application systems. A well known example is

the TEMPLAR (Tactical Expert Mission Planner). This system fills out a

daily air tasking order by sequentially posting a sequence of resource
constraints (i.e., each aircraft, ordnance. etc. assignment is processed as a
constraint on that resource). Another example is found in Meng and
Lehnert (1991) where strike plans are directly represented as a set of
temporal constraints. Maintaining consistency between multiple plans is
then treated as a temporal constraint satisfaction problem.I
3.4 Skeletal Planning

In the above discussion, we assumed that the planning process
begins from scratch. However, in some systems planning begins by
retrieving a partial partial plan that contains the major steps of the plan.
A pre-stored partial plan is often referred to as a skeletal plan. Skeletal
planning is a variant of the constraint.-based approach that solves planning
problems by trying to instantiate one of a set of pre-stored skeletal plans
(Stefik, 1981). Each skeletal plan can be viewed as a set of hard

S constraints. Additional constraints are added until the plan is complete (as
determincd by a inechanism such as the necessary truth criteria), or it is
determined that the skeletal plan cannot be instantiated (i.e., a hard
constraint needs to be retracted).

I
I

1 AItcriiativciy, it Iimay rccog~iz i c iIhat itlc conclLItS ui s 'TRUEt I2, 12+1) i.- justilicd

I Iy hlic assumtiiption '[13>'12 or I 3<'1 I.

1 4 3 13DM/VSQ-91-07/42-TR

BDM INTERNATIONAL, INC. I
3.5 Relevance to Associate System Technology

3.5.1 Plan Generation

The plan refinement approach is very general. In principle, any
mission planning problem can be addressed using this paradigm. However,
to effectively -)ply this paradigm to mission planning two issues must be
addressed. First, we need to identify how to represent constraints relevant
to mission planning. Second, we need to specify t reasonable mechanism I
for searching through the space of partial plans. One approach to
addresiing both of these issues is provided below. Although the approach
described below can certainly be improved upon, it does illustrate the
main point. Namely that mission planning is a problem domain that is
fully amenable to a constraint posting approach to automated planning. 3

The problem of representing constraints is not trivial. Any --
constraint language one develops should satisfy several criteria. First, the
full spectrum of constraints relevant to mission planning should be
representable. It does little good to develop a language that can only
handle a subset of the constraints, since solutions satisfying these I
constraints are as likely as not to be unrealistic. Second, the constraint
language should be understandable to the user community -- mission
planners. This will make it convenient for the users to control the
automated planning process. Third, the language should conform to
standard Al practices. Otherwise, the mapping of appropriate Al 3
techniques becomes more difficult.

As it turns out, there already exists within the mission planning 3
community a set of well-defined models that can be used to characterize
and evaluate proposed missions. These models are in the form of functions
that predict various mission characteristics as a function of input variables. I
Figure 3-5 shows graphically the functional relationships between some of
the variables that characterize a mission plan. For each node in the graph
a function is defined that specifies the value on that node as a function of
the values on the input nodes. Consequently, these functions can be used
to assess whether a fully specified mission plan satisfies a set of goal 3
constraints.

The constraint posting paradigm requires a mechanism to evaluate I
partial plans. This is achieved by using a set of simple heuristics to
temporarily complete a plan, and then evaluate the completed plan. In
this way, a worst case completion of at partial pian is generated. If the
worst case completion satisfies the goal constraints then the partial plan is

I
4. 4 B3DM/VSQ-91i-0742-TR- I

BDM INTERNATIONAL, INC.

accepted, since the planner now knows that a satisficing completion of this
partial plan is always achievable. In addition, a set of best case estimates
are also needed. For each incompi, te segment of the plan a heuristic
overestimate of the best possible value achievable on the goal criteria is
calculated. For inst."nce, if two way points have been specified, but not the
route between them, then minimum fuel consumption can be specified
using a high altitude, straight line path.

The process of planning may now proceed very much as it does in

TWEAK. The goal state is characterized as a set of hard constraints (time-
over-target, other timing constraints, required way points, etc.) and
evaluation criteria (minimum probability of arrival, minimum probability
of destruction, etc.). Beginning with this initial list, planning proceeds as
follows:

1. Using the current list of constraints, evaluate the worst case plan to
determine if any criteria are violated.

2. If no violations exist and the plan is complete, exit with current
constraints as the plan.

3. If no violation exists and the plan is incomplete, heuristically select
constraints that will improve the plan on the evaluation criteria.

4. If a violation exists, heuristically select constraints that will improve
the plan on the violated evaluation criteria.

5. Evaluate the plan using the best case estimates and determine if any
evaluation criteria are violated. If there is a best case violation,
backtrack on the most recently posted constraints.

6. If backtracking fails, exit with no plan.

7. If constraint are found, post the constraints.

8. Go :o 1.

As the above discussion illustrates, the general mission planning
problem is compatible with a constraint processing approach. There are,
however, two possible problems with this approach. First, the plan
refinement paradigm is a satisficing paradigm. There is no guarantee that
a plan generated via plan refinement will be the lowest cost or even a low
cost plan. This contrasts sharply with globally-directed search procedures,

4 5 BDMNSQ-91-0742-TR

BDM INTERNATIONAL, INC. i

such as A*, that always generate the lowest cost path. Indeed even for I
moderately complex problems there is some evidence (Freeman, i991)
that indicates that a STRIPS-like approaches will generate very poor plans.
Second, the efficiency of this procedure is unclear. There is no a priori
reason to believe that searching through a large space of possible
constraints involves a lesser computational burden than searching the
state space.

One way around both of these problems is to rely on a caiefully n
engineered library of skeletal plans each of which specifies the main steps
in a plan. When skeletal plans are used, then the focus of the plan
refinement process is to instantiate the skeletal plan. Often this is just a
matter of finding values for the variables in the skeletal plan, although
scmc. temporal ordering and step insertion constraints may be involved. If
the refinement process begins with a reasonable skeletal plan, then a
satisfactory plan should be quickly generated.

3.5.2 Plan Modification

Refinement based procedures are not particularly well-designed for
addressing plan modification problems. The principal way to do plan
modification (e.g., Wilkins, 1988) is to (1) identify why the current plan is
invalid, (2) sequentially remove constraints until a partial plan is found
that is no longer invalid, (3) initiate the refinement process using the U
partial plan as the starting point. In short, replan by beginning with a
partial, but viable plan. Note that this approach is likely to show a
tendency to find modified plans that just barely avoid the initial problem.

3.5.3 Real-time Planning

The most obvious approach to achieving real-time performance with
the plan refinement strategy is to rely on a library of well-engineered
skeletal plans. Planning then becomes a relatively simple problem of
selecting and instantiating appropriate skeletal plans. Skeletal planning is I
the approach used for generating tactical advice in the Pilot's Associate.
The main weakness of this approach is its dependence on the quality of the
skeletal plans. It presupposes an ability to anticipate the problems that an
operator will face and to engineer a priori solutions to those problems.

An alternative approach to achieving real time performance has been
recently suggested by Boddy (1991). Boddy's approach is to employ two

46 BDM/VSQ-91-0742-TR

-- BDM INTERNATIONAL, INC.

1 levels of problem solvers. The first level is a constraint posting problem
solver that sequentially adds consistent temporal and variable constraints3 to the plan. The second is a simple and quick problem solver that will
quickly complete any partial plan, but without any guarantee of avoiding
constraint violations. Planning proceeds by using the constraint posting

problem solver, but if the planning process is interrupted with a need for
an immediate answer, then the more rapid problem solver can be invoked
to quickly complete the plan. In this way anytime problem solving (Dean
and Boddy, 1988) behavior is achieved; where the quality of a plan
improves as time available for problem solving increases.

II
I
I
I
I
I

I
I
I
I

i4 '7 3DM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. I"

I-
Ii
I-
I

I

I!
II
I!
I1

I-

II

A B BDMIVSQ-91-0742-TR

BDOM INTERNATIONAL, INC.

I CHAPTER 4

PLANNING AS PLAN TRANSFORMATION
AND CASE-BASED PLANNING

In the plan refinement paradigm planning is achieved by beginning
with a null or abstract (skeletal) plan and incrementally adding details to a
plan. There is no mechanism for modifying a detailed plan to fit a new
situation. In contrast, the plan transformation paradigm suggest thatI planning is often a matter of modifying a detailed plan so as to fit a new
circumstance. Proponents of the transformational approach seem to differ
as to the extent to which they claim planning is solely a matter of detailed
plan transformation. There seem to be three loose camps

Transformations for Plan Repair - Plan transformations are primarily
useful for addressing plan repair problems. An initial plan may have been
carefully constructed using the refinement approach and transformations
are used to repair the plan when unexpected events occur (e.g., Wilkins,
1988; Ambros-Ingerson & Steel, 1988).

1 Transformations for Plan Improvement - Plan transformation can be
used to transform a hastily constructed plan into a viable plan. Plan
generation is achieved by using a crude mechanism for generating anI initial plan and then modifying that plan until a satisfactory plan emerges
(e.g., Linden, 198?).

I Case-Based Planning - Planning is largely a matter of adapting plans
that have worked in similar situations. Through experience the planner

I builds a library of past cases. When addressing a new problem, a retrieval
mechanism posts a plan that worked in a similar situation. The retrieved
plan is then modified to fit the particulars of the current situation

I (Hammond, 1989).

S 4. 1 Mechanisms for Plan Transformation

All three of the transformational paradigms require an effective
procedure for modifying a plan. By far the most common approach is to
use a set of failure-fix rules, where the precondition of the rule is a
S problem test (a "failure") and the consequence of the rule is a procedure
for modifying the plan (a "fix"). Failure-fix rules can range in complexity

4 9 BDIMVSQ-91-0742-TR

BDM INTERNATIONAL, INC. U
from very simple rules (e.g., drop a variable binding) to a complex set of
changes that represents a single modification.

To illustrate the process of plan transformation, consider the problem
shown in Figure 4-1. Assume a hypothetical planner that must move the
blocks from the initial state to the goal state. As in Section 3.0 we will
assume that plans are rcpresented as a set of constraints. Since the plan
generated by TWEAK achieves a goal with the same structure as the
current goal, it is recalled as a plan to try to transform. We therefore
begin with the following plan.

II

E 3
E 3

D E F F I
Initial State Goal State I

I
I

Hiure 4-1: Bloc!ks World Problem for 'T'ransformational
Planning Example

I
5 0 IIDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC.I
CONSTRAINT TYPE CONSTRAINTS MODIFICATION

I STEP INSERTION MOVE(xl,yl) NONE
VARIABLE xl=A
VARIABLE yl=B
STEP INSERTION MOVE(x2,y2)
VARIABLE x2=B
VARIABLE y2=C
VARIABLE zl=TABLE
VARIABLE z2=TABLE

I TEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl)
STEP INSERTION NEWTONVER(x3)
VARIABLE x3=v2
VARIABLE z3=xI
TEMPORAL ORDER NEWTOWER(x3) before MOVE(xl,yl)

I TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2).

Upon evaluating this plan, our hypothetical planner notes that the
objects A, B, and C are not relevant to the current problem. This "incorrect
bindings" problem can be repaired with an "unbind variables" procedure.
This leads to the following constraint list:

CONSTRAINT TYPE CONSTRAINTS MODIFICATION
STEP INSERTION MOVE(x 1,y 1)
VARIABLE unbind(xl)
VARIABLE unbind(y 1)
STEP INSERTION MOVE(x2,y2)
VARIABLE unbind(x2)
VARIABLE unbind(y2)
VARIABLE zl=TABLE
VARIABLE z2=TABLE
TEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl)
STEP INSERTION NEWTOWER(x3)
VARIABLE x3=y2
VARIABLE z3=xl
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x 1 ,v 1)

I TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2).

I Now the planner notices that the goal state ON(D.E) is not a.sserted
anywhcae in the plan. This problem can be repaired by binding xl to D

i
S5 1 BDMIV'SQ-91-0'142-TR

BDM INTERNATIONAL, INc. H
and y l to E. Similarly, ON(E,F) can be asserted by binding x2 and y2 I
appropriately. This results in the following plan.

CONSTRAINT TYPE CONSTRAINTS MODIFICATION U
STEP INSERTION MOVE(xl,yl)
VARIABLE xl=D bind(xl)
VARIABLE yl=E bind(yl)
STEP INSERTION MOVE(x2,y2)
VARIABLE x2=E bind(x2) I
VARIABLE y2=F bind(y2)
VARIABLE zl=TABLE
VARIABLE z2=TABLE
TEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl)
STEP INSERTION NEWTONVER(x3)
VARIABLE x3=y2
VARIABLE z3=x 1
TEMPORAL ORDER NEWTOWER(x3) before MOVE(xl,yl)
TEMPORAL ORDER NEWTOWER(x3) before MOVE(x2,y2)

At this point the planner discovers that the consequences of
NEWTOWER(F) are already true in the current state. Consequently, the
plan has an "irrelevant action" problem that can be repaired with a
"remove action" procedure. This leads to the final plan:

CONSTRAINT TYPE CONSTRAINTS MODIFICATION
STEP INSERTION MOVE(x I,y 1) remove

NEWTOWER(x3)
VARIABLE xl=D unbind(x3)
VARIABLE yI=E unbind(z3)
STEP INSERTION MOVE(x2,y2)
VARIABLE x2=E
VARIABLE y2=F
VARIABLE zl =TABLE
VARIABLE z2=TABLE
TEMPORAL ORDER MOVE(x2,y2) before MOVE(xl,yl) I
As this example illustrates, a set of failure-fix rules can be used to

transform an invalid plan into one that is valid. Our hypothetical planner,
however, is lacking one feature often found in transformational planner - a
plan justification (Ambros-ingersorn & Steel, 1988, Kambhampati, S., 1990).
Plan justifications are a record of why each element of the plan was added.
Such a record makes it easier to identify appropriate transformations,

5 2 BDM/VSQ-91-0742-TR
II

BDM INTERNATIONAL, INC.

since the justifications can be examined to determine if they are still valid.

For instance, in the plan generated by TWEAK, the action NEWTOWER(x3)
& x3=xl was added to the plan so that a precondition of MOVE(xl,yl)
could be established, namely CLEAR(xl). In the situation described above,
once xl=D the condition CLEAR(xl) was true in the situation prior to
NEWTOWER(x3). Consequently, the justification tor including
NEWTOWER(x3) in the plan becomes invalid.I
4.2 Case-Based Planning

The case-based planning paradigm emphasi,-cs the importance of
episodic memory in automated planning. Through experience the planner
builds a library of cases where each case represents a specific episode that
is relevant to planning. Episodic case information is used in a variety of

I ways. As discussed in Hammond (1989) these include:

Problem Anticipation - Potentiai planning problems are identified by
I natching current situation features with features of cases of past

planning problems.

Plan Retrieval - Plans are retrieved by finding previous plans that
match as many of the current goals as possible while minimizing the
number of problems anticipated.

Plan Modification - Fiais are modified by applying a set of failure-fix
rules. These rules may themselves be retrieved by recalling cases of
similar failure and the modifications that corrected those failures.

Plan Repair - Like plan modification, plan repair involves applying
failure-fix rules that may correspond to previous of cases plan failureI and repair.

The success of a case-based planner depends in large measure on its
ability 1.o appropriately index and retrieve relevant cases and
modifications. If the retrieval mechanism retrieves inappropriate cases,
men it is unlikely that the case-based planner will iterate to a satisfactory

I plan.

5
i5 3 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. U
4.3 Relevance to Associate Technology I
4.3.1 Plan Generation

For plan generation the transformational paradigm is comparable to
the refinement paradigm. A transformation can be treated as two
refinement steps: (1) relax some constraints and (2) post new constraints.
The principal difference is that the transformational approach begins the
search process with a specific plan. whereas the refinement approach I
begi- ,-,;th a null or skeletal plan. There is no a priori reason to believe
that one or the other approach will be more efficient or generate better
plans. Rather efficiency and plan quality will depend more on the initial
starting point (skeletal plan or case) and the nature of the refinements
(transformations) than on any inherent characteristic of the paradigm.

The SOAS project is currently committed to a transformational
approach (Berg-Cross, 1991). In particular. the planner architecture in
SOAS uses a variant of the case-based approach. The SCAS planner uses a
case-based planning architecture. However, rather than rely on episodic
memory the cases are knowledge engineered. In this way, the planner is
likely to find "cases" of plans and plan modifications that are applicable to
any situation encountered. This is similar to the skeletal planning
approach used in Pilot's Associate except that rather than instantiating a
knowledge engineered skeletal plan, the SOAS planner must modify a
knowledge engineered detailed plan.

4.3.2 Plan Modification

A transformation can be viewed as the compilation of several
refinement steps. Consequently the refinement and transformational
approach are comparable in addressing plan modification problems.
However, a planner that uses a well-engineered set of transformations is
likcly to be considerable more efficient than a refinement-based approach.
This w,,,ill be particularly true if the refinement procedures requires that
the planner search through multiple possible sequences of refinements
before it "discovers" the successful transformation. I
4.3.3 Real-time Planning

As with plan generation in general, the quality and efficiency of real-
time planning will depend on the quality of the implementation -- and not

5 4 BDM/VSQ-91-0742-TR

II BOM INTERNATIONAL, INC.

whether a refinement or transformational approach is selected.
Particularlv key to the tiransformational approach is whether the retrieval
i mechanism quickly identifies appropriate modifications or whether the
jllanner must backtrack from a set of inappropriate modifications. As
noted above. SOAS attempts to rapid planning by carefully selecting
appropriate initial plans and modifications.

II
I
I
I
U
I

I
I

U5 5 [II)M/vso.91-(Y742-'II(

BDM INTERNATIONAl , INC.I

II

I
I
I
I
U
I
I
I
I
I
I
I
I
I
I

I
5 6 BDMA'SQ-91-0742-TIRI

I
BDM INTERNATIONAL, INC.

I CHAPTER 5

PLANNING FROM FIRST-PRINCIPALS

I Within A[there is strong tradition of logicisrn -- a general approach
to reasoning that attempts to reduce every problem to formal logic. This is
true in automated planning as well. Specifically, the pure logicist would
use statements in a formal logic to represent a problem domain and then
proceed to use automated theorem proving techniques to find a plan.

A formal logic is usually composed of three parts: language,
deduction system, and semantics. The language specifies all the allowable
symbols of a logic and how those symbols may be combined to form
statements. [he deduction system specifies how to apply the language to
generate deductions. The semantics specify what the symbols and

statements in a language "mean". Here "meaning" typically is defined by
what each elements of the language denotes or represents. For instance,3 the simple statement ON(A,B) is intended to represent at situation where
the block that symbol A denotes has the relation on top of with respect to
the block that symbol B denotes, where on top of is a relation that the
symbol ON denotes.

In the philosophical logic literature, there is a long standing debate
as to the adequacy of alternative logics (Haack, 1978). Classical logicians
argue that the only correct and necessary logic is predicate calculus,
specifically first-order predicate calculus (FOPC). Nonclassical logicians
suggest that predicate calculus is generally inadequate and that alternative
logics are appropriate for different circumstances. The debate between
classical and nonclassical logic is also found in the Al literature. For
virually any type of automated reasoning problem one finds both a
classical and nonclassical approach to addressing that problem.

In this chapter, we will focus on the application of FOPC to
automated planning and a simple extension called default logic. All of the
major issues can be demonstrated using these logics.

I 5.1 IFirst Order Predicate Calculus (I'(PC)

I As mentioncd above i logic is conposed of three elements: language,
d(cductiion svste in and sc mantics. Each of these parts for I:OPC are
described helow.

1 5 7 I1)MiVSQ-91-0742-TR

BDM iNTERNATIONAL, INC. U

5.1.1 Language and Intended Denotation

The symbols of FOPC and their intended denotation are described
be low. I

Constant symbols serve as names for the objects being denoted.

Variable symbols serve to denote any of a set of objects. I
F,'unction s,,mbols reference functions that map from one or more
objects into an object.

Predicate symbols denote properties of individual objects and
relations between objects.

Any constant or variable symbol is a term. Any function of a term(s)-I
is also a term. A predicate with the correct number of terms as arguments
is called a well-formed formula (wff) or a statement. For example, the wff
Type-label(AC#7,F-14) denotes that the object denoted by the constant
symbol AC#7, and the object denoted by the constant symbol F-14 havc
the relation Type-label. Similarly, the expression Is-
pilot(commander(AC#7)) asserts that the object that corresponds to the
term commander(AC#17) satisfies the property Is-pilot.

Operators allow the construction of complex wffs from simple wffs.
The operators normally used in FOPC are - (negation), A

(conjunction), v (disjunction), and --- (implication). 2

Quantifiers allow the construction of wffs that make assertions about
sets of objects. The quantifiers normally used in FOPC are V
(universal quantification) and 3 (existential quantification).

For instance, the expression

'VxLType-label(x,F-14) -* (Role(x,FIGIHTER) v Role(x,1BOMBER))]

Iplease note that this is a very informal introduction to FOPC. In a rigorous
introduction, th[le guagc and semantics of a logic would bc carefully scparatcd. For

our purposcs, howcver, this is unnecessary.
2 Fornmally. only two operators (e.g., - and -->) are necdcd to define an FOPC

language. The othcrs can be defined in terms of the two inuitiallv selected. Similarly,
existential quantification can be defined in terms of unviersal quantification, and
vice versa. So only oiee of these is needed to define the language.

5 8 BDMVA'SQ-91-0742-TR

BDM INTERNATIONAL, INC.

asserts that for all objects, if the object is an F-J4 then the role of that
object is either FIGHTER or BOMBER. 3

5.1.2 Deduction

A deduction system allows one to draw conclusions from an initial

database of wffs. In FOPC the deduction system is often characterized by
an axiom system, that specifies a set of axiom schemas and rules of
inference. A typical axiom system for FOPC is the following

Axiom Schemas
(p, q and r represent any wffs, t represents any term, x represents any

variable)

(A 1) p-4 (q-* p)
(:%2) (p--- (q--+ r)) --4 ((p-4 q)--4 (p--4 r))
(A3) (-q-- ~p)--- (p-4 ()

(A4) Vx[(p--ý q) --4 (p --4 Vxlql)] 4

(A5) 'ý.x[p(x)] ---+, p(t/.x)

where p(t/x) means p with all unbound instances of x are
replaced with the term t.5

Rules of Inference (DB is an initial database of wffs)

3Modui Ponens (MP) - If DB contains the wffs p and p-4q, then conclude
q.

Generalization (GEN) - If DB contains the wff p then conclude Vxp.

In FOPC the only conclusion allowed are wffs that are either (a)
contained in the original data base, (b) instantiate one of the axiom
schemas, or (c) can be derived from repeated applications of the rules of
inference. For instance, from the data base

3 As needed, wc also throw in nonlogical symbols (..)", "I", and "J]) to help mark
the scope of each operator and quantifier. These symbols are only markers, and have
no intended mcaning.

4 Subjcct to the constcaint that the wff p does not contain the variable x outside
the st•ope of a quantifier.

5Subject to the constraint that all variables in i are free wherever x occurs free
in p.

35 9 BIDM/VSQ-91-0742-TR

BoM INTERNATIONAL, INC. ,

DB = { Vx[Type-label(x,F-14) -* (Role(x,FIGHTER) v Role(x,BOMBER))I, i

Vx[Member-of(x,SQUADRON#2) -- Tvpe-label(x,F-14)],
Member-of(AC#6,SQUADRON#2)). 3

The conclusion

Role(AC#6,FIGHTER) v Role(AC#6,BOMBER)

can be generated via the following sequence of conclusions: i

How Deduced 3
C1 V x[Member-of(x,SQUADRON#2))

SType-l!a bc I(x, F- 1.-,Jj ,1

SMember-of(AC#6,SQUADRON#2) i
-Type-label(AC#6,F- 14) A5

C2 (Member-of(AC#6,SQUADRON#2) i
-* Type-label(AC#6,F- 14)) DB2+CI+MP

C3 Type-label(AC#6,F-14) DB3+C2+MP i
C4 V x[Type-label(x,F- 14)

-* (Role(x,FIGHTER) v Role(x,BOMBER))]
-4 (Type-label(AC#6,F- 14) i
-4 (Role(AC#6,FIGHTER) v Role(AC#6,BOMBER))) A5

C5 (Type-label(AC#6,F- 14) 3
-* (Role(AC#6,FIGHTER) v Role(AC#6,BOMBER))) DBI+C4+MMP

C6 Kole(AC#6,FIGHTER) v Role(AC#6,BOMBER))) C3+C5+IMP

5.1.3 Soundness and Completeness

The usefulness of FOPC comes from the fact that it satisfies the
following two,poperties. 6 I

Soundness - No matter what objects or relations are denoted, if a
conclusion C is deduced from a database DB, then there does not exist
a possible state where the statements in DB are true and the
statement C is not true.

6 1This is a very informal description. 3
6 0 BDNMSQ-91-0/42-TR

BDM INTERNATIONAL, INC.

I
The soundness property asserts that the FOPC deduction system will

only deduce truths from truths. Or put another way, if the premises of a
data base hold true, then the conclusions drawn from that data base are

i inevitably true.

Completeness - If all the possible states that are consistent with a
database DB contain the wff C, then C can be deduced from the
database DB in finite time.

I The completeness property asserts that every valid conclusion of a
data base can be deduced using an FOPC deduction system.

I Because FOPC is sound and complete, it provides a very general and
useful approach to inference. If a problem can be formulated as a set of
FOPC wffs, and a solution to that problem exists, then it is guaranteed that
an FOPC deduction system can find that solution. This property extends to
planning problems as well. If the problem can be formulated as a set of
wffs, and we can express the question "Does the:e exist a plan that ... " as a
wff, then FOPC is guaranteed to find a plan if one exists. Also, the FOPC
deduction system will never return a plan which, by the formulation of the

Iproblem, does not work. (Note however that if no solution exists then the
FOPC deduction system may not be able to make that deduction and

I continue processing forever.)

I 5.2 The Situation Calculus and other Temporal Logics

5.2.1 The Situation Calculus

I The situation calculus is an example of an FOPC approach to

formulating planning problems. It provides a convenient mechanism for
S expressing situation-specific truths. To illustrate, consider the wff Fuel-
status(AC#6,LOW) indicating that AC#6 is low on fuel. In the situation

i calculus a statement such as this would be expressed as

ltolds(fuel-status(AC#6,LOW),S 1)

I indicating that in situation SI fucl-status(AC#6,LOW) is true. Note that the

expression fuel-status(AC#6,LOW) is now an argument of a predicate.
I Consequently, it is no longer a wff, but now has the status of a term.

Terms that are intended to reflect situation-specific truths are referred to
as Jluents.

i 6 1 BDMIVSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

Using the situation calculus it is now possible to describe situations
and how actions change situations. The consequences of the MOVE
operator could be characterized by the following statements:

al. Vaxyzs [Holds(at(a,x,y,z),s) -4 Holds(alt(a,z),s) 3
a2. Vaxzs 1(Holds(alt(a,z),s) & -(x=z)) -ý -Holds(alt(a,x),,)-

a3. Vawxyzs [Holds(at(a,x,y,z),s) -4

Holds(at(a,x,y,plus(z,w)),result(increase-alt(a,w),s) 3
a4. Vawxyzs [Holds(at(a,x,y,z),s) -ý

Holds(at(ax,plus(y,w),z),result(move-north(a,w),s) -

al and a2 are domain axioms that describe necessary relationships
between fluents in a situation. a3 and a4 are effect axioms that describe

the consequences of various actions. In particular, al uses the term
result(increase-alt(a,w),s) to indirectly reference "the situation that results
from increasing altitude w units in situation s." By nesting "results" we can
reference the situation that results from a sequence of actions. For
example,

result(move-north(AC#6,20),
result(increase-alt(AC#6, 100),

result(increase-alt(AC#6,50),S 1)

denotes the situation that is the result of moving AC#6 north 20 units in 3
the situation that results from increasing altitude 100 units in the situation
that results from increasing altitude 50 units in situation Si. That is, it
denotes the situation that results from performing the following sequence
of actions in SI:

increase-alt(AC#6,50) -> increase-alt(AC#6,100) -> move-
north(AC#6,20).

Now that we see how to describe situation specific facts and action

cunces. thc n ,x - ;t .. ;aight, forward. In order to find a plan to
achieve a goal G one simply applies an FOPC theorem prover to a wff of theI

form 3s[Holds(G,s)]. If a situation exicts that satisfies the goal then the

theorem will find that situation and will refer to it by stating the sequence
of actions required to reach that situation. For instance, if we begin with a

data base that contains al through a4 above and the wff

62 BDMIVSQ-e 1-0742-TR I-

II

BDM INTERNATIONAL, INC.I
Holds(at(AC#6,10,10,10),S 1)

and submit for proof the theorem 3s[Holds(at(AC#6,10,30,20),s]. The

I theorem prover will return a proof of a wff of the form:

Holds(at(AC#6,10,30,20),
I result(increase-alt(AC# 6 ,10),

result(move-north(AC#6,20),S 1)).

I
5.2.2 Temporal Logics

I The situation calculus was one of the first logics proposed for use in

automated planning (Green, 1969; Kowolski, 1979). It was soon realized,
however, that its ability to represent temporally ordered facts was limited.

For example, in the situation calculus actions and their effects are discrete.

The ability to describe processes that evolve gradually over time ic l;mited.

Also it is difficult to represent situations where multiple events and

processes occur simultaneously.

I Because of the limits of the situation calculus, a variety of more

expressive temporal logics were developed. In these logics, rather than

bind the truth value of a fluent to situations, they are bound to time points

or time intervals. For instance, in Shoham's first-order temporal logic

(1988) the statement

I tlolds(fuel-status(AC#6,10oW),T I ,T2)

S indicates that at the interval <i i,T2> AC# is low on fuel. Since fuel needs

to be replenished, it is possible to express this fact with the assertion

I Val 1 12tl t4
[Holds(fuel-statui(a,ll),t ,tl) A

-3t2t3 tl<t2 A t2<t3 A t3<t4 A Holds(refuel(a),t2,t3)j
-- Hiolds(fuiel-status(a,12),t4,t4) A 12<11,

I which states that unless an aircraft is refueled, its tuel level will not

increase. Note that terms such as TI, T2 etc. are abstract limne points. TFo

relate them to clock time, one could write expressions such as

Vaytlt2 !Iolds(refuel(a),tl,t2) A llolds(clock-reads(x),tl,tl)
I - Holds(clock-reads(y),t2,t2) A y>plus(x, 12).

i 6 3 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC.I

Which is intended to mean it takes at least 12 minutes to refuel.

As this example illustrates, temporal logics are considerably more
expressive than the situation calculus. However, the basic mechanisms of
deduction remain the same. Consequently, the strategy for generating
plans is still one of applying a theorem prover to try to prove that a
situation, time point or interval exists that satisfies a set of desired
conditions.

5.3 Fundamental Problems with Formal Logics for Planning

Consider the following data base: U
DB= (Voxys Holds(type(o,CAR),s) A Holds(at(o,x),s)

ý Hiolds(at(oy),result(drive(xys))) I
Hold s(type(#337,CAR),S 1)
Holds(at(#337,Home-loc),S 1) }.

The first sentence asserts that driving a car from location x to
location y will result in that car being in location y. The second sentence
asserts that in situation S1, the object #337 is a CAR. Although apparently
simple, these sentences can be very problematic for a formal reasoning
system. I

The first sentence is an overstatement. There are in fact an infinite
number of things that could occur that would prevent the car from
arriving at location y: a flat tire, engine trouble, an earth quake, etc.
Although none of these things are likely to happen, any one of them may
happen. If one does, then the formal reasoning system may find itself
with an inconsistent deduction. From DB, for instance, FOPC would deduce
the sentence

Holds(at(#337,Work-loc),result(drive(#337,Home-loc,Work-loc),S1)) 3
even if it received direct data asserting

-i-ulds(at(#337,Work-loc),result(drive(#33.7 ,1 .. .l.." ome-l~c,\Work-loc),S 1)).

To avoid this problem is to necessary to somehow qualify the first 3
sentence in DB by inserting extra conditions. For example,

6 4 BDNIVSQ-91-0742-TR -

I BDM INTERNATIONAL, INC.

IVoxvs

[Holds(type(o,CAR),s) ,^ Holds(at(o,x),s)
I Anormal(at~o,y),driveo,x,y),s)]

-4 Hold s(at(o,y),result(drive(o,x,y,s))).

I H[-Iolds(flat-tire(o),s)
A -Holds(engine-trouble(o),s)
A -Holds(earth-quake,s)
A

-+ normal(at(o,y),drive(o,x,y),s)I.

Unfortunately, qualified sentences of this form are useless. They
require that an infinite number of conditions be met before a deduction
can be made. However. if any conditions are dropped, then the possibility
of deducing inconsistent statements reappears. The qualification problem
is the problem of both efficiently and correctly reasoning about the
conditions under which an action has an intended effect.

The second sentence Type(#337,Car,Sl) suffers a similar problem.
Consider the action of drive(#337,Home-loc,Work-loc,SI). Clearly, the act
driving a car from home to work has no impact on !he fact that #337 is
still a car. However, in FOPC it is not possible to deduce that the act of
driving does no have this impact. Consequently, it is unable to deduce

I Hold s(type(#33 7,Car),result(drive(#337,Home-loc,Work-loc,S 1)).

This illustrates a second problem, namely that FOPC can only deduce
that an action does not affect a fluent if it can explicitly prove that no
change has occurred. Consequently, to be complete the situation calculus

must include a series of frame axioms that specify the relevant non-
consequences of each type of action. Obviously, for reasonable size
problems this is infeasible. The frame problem is the problem of finding
an efficient and correct mechanism for reasoning about the non-
consequences of an action. 7

I
5.4 Logics for Non-Monotonic Reasoning

1 Aimong the logicists in Al, it is believed that if a logic could be
developed that solves the qualification and frame problem while retaining

"Sec Brown (1997) for sonic other formulations of the qualification and frame
p roblcm.

i 65 BDMN/SQ-91-0742-TR

BDM INTERNATIONAL, MN. I

the desirable properties of FOPC (generality, soundness and completeness), I
then a truly general and effective formal logic for automated reasoning
will have been developed. Such a logic, in turn could be applied to
planning problems in the same way as FOPC can. Logics for non-monotonic
reasoning are designed to meet this objcctive.

FOPC and the situation calculus are monotonic logics. Once a
deduction is made the logic provides no facility for retracting that
deduction. Consequently, the set of deductions must increase I
monotonically. A logic for non-monotonic reasoning, however, can retract
previous deduction in the face of new evidence. Consequently the set of
conclusions is non-monotonic -- sometimes increasing, sometimes
decreasing. The ability to retract conclusions allows the logic to "jump to
conclusions" thai are stronger than pure deduction allows without risking
later inconsistencies.

A variety of logics for non-monotonic reasoning have been developed I
(for review see Reiter, 1987). It is beyond the scope of this report to
attempt to review even a subset of them. Instead, we provide a simple
example below and then note some of the problems with these logics.

5.4.1 An Example from Default Logic. i

Default logic (Reiter, 1980) is an extended logic that adds to FOPC a 3
set of default rules of the form A:BI-dB. This rule states that if A can be
deduced, and as long as it is consistent to deduce B then deduce B. Using
default logic we can modify DB to be

DB = { Voxys tltold(typc(o,CAR):s)
A Hold(at(o,x),s)
A Normal(at(o,y),drive(o,x,v),s)]
S[Hold(at(o.v).result(drive(o.x,y),s)))

A -Persist(at(o,x),drive(o.x,y),s)1
Vxas llold(x,.s) A Persist(x,a.s) Hold(x,result(a,s)
Holds(type(#337,CAR),S 1) I
l~olds(at(#337,l Iome-loc),SI1) },

and add the default rules

DF = { :NormaIl(f,as)l-dNornmal(f~a,s),
I Iolds(f,s):Pcrsist(f,a,s))I-dpersist(fa,s) .

66 3DDM'/VSQ-91-0742-T1R

I
BDM INTERNATIONAL, INC.I

The first default rule asserts that as long as it is consistent to deduce
that an action is normal with respect to a fluent, then this deduction can be
made. Similar, the second rule asserts that if a fluent holds in a situation,
and it is consistent to deduce that it will persist after the action is
performed, then that deduction can be made.

I From DB and DF an automated reasoning system can now deduce:

DEDUCTION SOURCE
I D1 Normal(drive(#337,I-ome-loc,Work-loc),S 1) DFI

D2 Holds(at(#3 37,Work-loc),
result(drive(#3 3 7,Home-loc,Work-loc), S 1.)) DB, DFI

D3 lHolds(type(#337.Car).
result(drive(#337,ILome-loc.Work-loc.S 1)) DB2, DF2

Now, if the reasoning system later learns

-Holds(at(#337,Work-loc),result(drive(#337,Home-loc,Work-loc),S 1)),

then the consistency criterion in DFl is no longer satisfied. Consequently,
DF1 can not be used to deduce D2. In effect the deduction D2 has been
retracted. This illustrates how a logic for non-monotonic reasoning can be
used to jump to conclusions that can later retracted.

Sometimes the default deductions lead to m.ltiole extensions. Each
extension includes a consistent set of default deductions, but the
extensions are inconsistent with each other. For instance, the database
{A,C} and set of defaults {A:BI-dB, C:-BI-d-B), has two extensions. The first
contains the default deduction B, while the second contains the default
deduction -B.

5.4.2 Problems with Logics for Non-Monotonic Reasoning

i Unfortunately, a satisfactory logic for non-monotonic reasoning has
yet to be deve!o-Fed. In one form or another, all of thcsc logics arc subject
to a general problem called the anomalous extension problem. AnomalousI cxtensions occur whenever the default reasoning procedures generate
deduct ions that were not intended by the kiiow ledge engineer or fail to

6 7 BDM/VSQ-91-0742-'R

BDM INTERNATIONAL, INC. -

generate deductions that were intended. For instance, the database and I
default rules section 5.4.1 could not be used to deduce

H olds((at(#337,Work-loc).
result(drive(#337,Home-locWork-loc),result(do-nothing,S I))).

This is because there is an extension that contains from the assertion

-persist(at(#337.Home-loc),result(do-nothing,S 1)), and I
-lHolds(at(#337,Work-loc),

result(drive(#337,l1ome-loc,Work-loc),result(do-nothing,S 1)))

thereby preventing DF2 from being applied. Consequently, the obvious
conclusion that do nc:hing does not change the location of an object can not
be deduced.

Although problems such as this can be individually repaired by
careful knowledge engineering a satisfactory general solution to these
problems has yet to emerge.

5.5 Possible Worlds Planning

Before closing this chapter, we should mention a system that merges
the FOPC approach with the planning as heuristic search paradigm. This is
Ginsburg's (1987) possible worlds planner. It works roughly as follows.
Initially, the planning domain is described in terms of a set of domain
axioms. Operators are defined in terms of a set of preconditions and an
add list. For any given state description, the description of the next state is
determined by using logical deduction to remove from the initial state
description all propositions that are logically inconsistent with the
propositions on the add list. Similarly, the distance of a state description
from the goal state is estimated by logically deducing dhe number of
propositions th ' must be removed from the state description in order to
be consistent with the goal state. Planning is then performed by using A* I
to search through the space of state descriptions where h* is based on this
distance estimate. 3

I
I

6 S BDMIVSQ-91-01742-TR

BDM INTERNATIONAL, INC

5.6 Relevance to Associaie Technology

I 5.6.1 Plan Generation and Modification

ihe logicist objective is to build a general logic-based approach to
automated reasoniri, where inference, decision making, planning, etc. are
all dcductive activities tiat aI based on a set of fitst-principles. If evcr
developed, an effective first iJciples reasoning system would have many
:vd TI a. s. 'iThe mosi imnpototant advantage i" that many software and
kncwledge engincerln. prohl,:'is disappear. It would no longer he

I neccssary to carefully engineer a knowledge base for each domain. Rather,
the t\nowlcdge engineer would only need to specify a set of axioms that

(describe tihe properties of the domain. Plan -c nertion ai~d plan
nr li.icdaiof problems could then be solved by executing a general logic-Iasd r ,sn incc melan•sm

r)i I Tk ,. S I II n IIIecIIit!IIS ll.

I L.iortunately, a .e neral pirposc logic-based reasonin, system
renains il• idea;. Cutn.ent systems do not oerlorm well enough to s..rv'c as
realistic planners. !'he logic-based approach to planning bears watching,I L)t U ci I I if- i a liu'is Il p imim - tiec uni Iii yi.

I.6.2 Real -time ilIanning

I At first look the first -.rinciples approach appears incompat.ble with
real tiflic p1 ning. 'l'hLorem p~r,,vers arn not generallv no!cd for their
elfi 1cien \ cven when they atre tailojed to certain killds (,I' deductions.
1'urtlit-rmonre. exnressive logics are incvit\iblv uiidccidable. Therefore, a
tisClul Ilist principals planner cannot he gu-.rantecd to tCenuna'e I) finit"
rlime. much less "i timc." llowcver. tie picture is net roa!lv as leak as itIlook:;. Recent work (Ginsburg. 1990; ltehncr, 199 1': I orv i t,. 1991) has
Show'n that ik iay be possible to have a theorem prover gcnerateIiic results that ue usuallv correct. Consc(luclitlV, it i'. pussiblc
to iile.rut)t the autoniatc(d lrc:k-sonilg proccss to request the "'eCst answer
s, (•,,-. nc ('C•VHOped, :,iCI i capa)bility would TIKakI it ipo.ssibhe for a
Illit [1miiciplcs planiner 1t, 1h.jprtl atlnVtillie" pla'iming. 'l'hi. work is \cy

', hilt bc,1rs \8Llie

I
I
I

BDM INTERNATIONAL, INC. i

I

II
I

I
I

I

!I

I
BDM INTERNATIONAL, INC.

CHAPTER 6

I* PLANNING AND REACTING:
ARCHITECTURES FOR PLANNING IN REAL-TIMEI

Associate systenms arc designed to provide rcal time planning and
decision support. Unfortunately, Al research in automated planning has
traditionally focused on the deliberation aspect of planning. Relatively
little attention was paid to the issue of real time (i.e., in time) reactivity.
In the last few years, however, this orientation has changed. There is an
emerging body of research directly addressing the issue of real-timeI plann i nig.

Provided below is a brief overview of ,ome of the principal
architectures that have been proposed for supporting the need to plan
deliberation and the need to react in real time. Please note that this is still
an immature research area and stable paradigms or "schools of thought" 'n
this area are still in transition.

I 6.1 Situated Activity/IUniversal Planning

Loosely characterized, this approach emphasizes the reactive clement
of intelligent behavior to the point of suggesting that deliberate/"look
ahead" planning is a largeiy irrelevant aspect of intl ligent behavior (AgreI and Chapman, 1987; Brooks, 1991; Kaelbling and Rosenschein 1990). This
approach is based on the belief that a well-de:i gned set of situation-action
rules can lead to a sequence of actions that appear to be part of a coherent
plan. vcni though each .ction was the result of applying an individual rule.
Since the agent's behavior is being directed by simple situation-action

I rules, ratlher than time-consuming plan generation, rapid reactions are
(uZiltranteed.

To ill-it itc consider lFigure 0.-i The robot know's that t hgoal
Iocation is tile corner marked wit) an X. I!s behavior is guidcd by two
I ulcs. First, it an objcci is cucountered, mnove :,round tile object in tilej ,eumeral direction oI tilt e oal location. sccnid. I h tlit' Is I n il t, Inove
dirctI'v to'waid the objcc!. A path thiat could rcsult from thcst: two rulos is
shown in ligurc 6-1. Althougii Ihc path itself looks likc it mav havc bccn
the prodltct of careful planning, it in fact was simple ihc result of the
application od two siin1pel rules.

I
I 7 1 I D,1 k,VS(). 91)7-4 2 -IR

I
BDM INTERNATIONAL, INC.

I

--.-.. EH 1 _

_ _

-]

- _---_ I

- _ _ __ _ - I
L__ __ II

- I I
F___ igure' 6-1 A Reasonaible "PlaW'" from a R~eactive RobotI

72 IH[MiVSO-9! .(]742-l'1.I

BDOM INIERNATIONAL, INC.

I When first presented, this viewpoint had a significant impact on the
automated planning community. It presented an approach that was in
sharp contrast to the tiaditional, deliberation-based viewpoint. However,
these contrasting views evolved toward a more common perspective --
that intelligent behavior requires a balanced combination of planning and
reacting. Many of the architectures presented below represent proposals
for achieving such a balance.I
6.2 Layers of Planning

This approach recommends the use of multiple simultaneous

planning layers. Time-consuming plaining and deliberation occurs at the
"higher" levels, while lower level procedures are designed for rapid action
generation (Kaelbling, 1987). As each planning layer completes its
processing, the actions it recommends are posted on a blackboard. As the
situation evolves, the system checks the blackboard continually for the
highest level actions that have been posted. If the situation evolves slowly
and is relatively stable, then there will usually be sufficient time for a
hiphic level plmnner to complete its deliberation and the agents behavior
will be guided by an explicit plan. On the other hand, if the situation is

I dynamic, with unexpected events occurring often, then the actions posted
by the lower level planners will be the only ones on the blackboard.
Consequently, in such situations the agents behavior will be largely
reactive.

I 6.3 Scheduling, Planning, Reacting, and Control Activities

The previous paradigm strategy assumes that different levels of
planning can occur in parallel. Even it feasible, this approach mnay
represent a waste of computational resources. An alternative approach

I would be to dynamically schedule the extent to v.'lich the system engages
deliberate vs. reactive planning (e.g., i-endler and Agrawala, 1990,). In
rapidly charing situations, the scheduler would assign a higher priority

(more computational resources) to reactive planning, thereby reducing
reaction times. Similarly, in slowly evolving situations, more computation

I would bu applied to explicit planning.

I

.73 IIDM/VSQ-91 -0742-4TR

BDM INTERNATIONAL, INC. I

6.4 Decision Theoretic Control of Planning I

In the last few years, decision theory has regained some popularity
in the Al community. The distinction between symbolic problem solving I
and numeric reasoning has largely disappeared. With rcgard to the
deliberation vs. action trade, f decision theory methods have been
proposed for explicitly controiiing the scheduling of these activities. The
general idea here is that the reasoning system always maintain a list of
options with calculated expected utility, IEU). Initially, EU is calculated by I
employing a decision model that considers just a few factors. As time

permits, the decision model can be expanded to consider additional factors.
One of the interesting features of this approach is that the oecision
theoretic calculations can be used to calculate the expected utility of
considering additional factors (ttenrion, 1991).1

6.5 Planning for Reaction

In Al, a plan has traditionally been viewed as a program for action
that can be loaded and executed by an execution system. An alternative
vieNv is to use the product of deliberate planning (which may not be an

explicit plan) as a guide for a reactive system. 'he are a number of
variations on this idea. For instance, Martin and Allen (1990) take the
approach that a plan can serve as a set of instructions for a reactive
system, hut that the instructions set may vary in its level of detail. 3
Consequently, the :nstruction set may be very abstract, providing general
guidance to the reactive system. More -xtreme is the approach promoted
by Payton (1990), suggesting that the product of deliberate planning notI
be a plan, but a set 1ocal rules that, if followed, will lead to behavior that
seems !o conform to a plan. 2

6.6 Anytime Problem Solving

Another approach to real time reactivity is to develop planning
systems that can be interrupted with a request to produce the "best
ansWer sO far." Such a planner would be an instance of an anytime

ilhis is different ihan expected value of information (EVOI). In E-VOI, the current

decision model is used 1o determine whcther additional information (e.g.. sensor test)
should be obhaizicd. In the case of cxpanding the decision model, the decision nceds
I u be made as to w hcther hc cnurrent decision model should be cxpandcd. This II
dlccision must be made outside the current decision model.

2-Paywtns L'radicnt field can he viewed as a set of local rules. I

7 4 t3 IMVASO-91-0742 .TR

BDM INTERNATIONAL, INC.

problem solver (Dean and Boddy, 1988). Siaizle and Hamburger (1985)
achieve anytime behavior in their expert system for artillery fire
allocation by quickly generating an initial solution, and then iteratively
modifying that solution as time permits. Boddv (1991) suggests that
anytime behavior can be achieved by maintaining two problem solvers. A
complex problem solver is used as long as time is available. When time is
short, a simple and quick problem solver is invoked to complete any
partial plan generated by the more complex problem solver. Ginsburg
(1990) suggests that declarative nonmonotonic logics can be used to
support anytime problem solving, because such logics can be designed to

I quickly jump to default conclusions that may be retracted later as a result
of additional deductions. 3 , Lehner (1991) and Horvitz (1991) have noted
that probabilistic reasoning can be used to convert many symbolic problem
solving ;ilgorithms into anytime problem solvers. This approach is
discussed in Section 7.2. finally, it should be noted that transformational
planners (see section 4.0) are generally adaptable to anytime problem
solving, since these planners operate by initially invoking and then
debugging plans. A complete, current plan is always available, albeit it
may be a faulty one.

6.7 Relevance to Pilots Associate

The relevance here is obvious. One of the key elements of associate
technolgy systems is that of providing real time planning support.
Consequently, any architecture that merges planning and reai time

i behavior should be of interest to developers of associate systems.

I
I
I
I

I3"'ic iiatesting feature i in shure's approach P. that [hi e dcfault coiiclusioris

mav hc ; ctractcd r;: a rcsyit (A new dcduct.tils n iadc fromt a stable data base. This is
different ilhan most nonlotIotOnlic logics where n•w ilroinialtlo is requircd lo
retract a (clf aulIt comckision.

75 BI)M/\ SQ.91-0742-IR

BDM INTERNATIONAL, INC. U
I
II
I

I
I
I

I
I
I
I
I
I
N
I
I

76 B DM/V SQ-91-0Y742-TR I

I BDM INTERNATIONAL, INC.

I CHAPTER 7

AUTOMATED PLANNING ANDI MATHEMATICAL OPTIMIZATION

Mathematical optimization (also called mathematical programming)
is an area of Operations Research oriented toward the development ofI automated procedures that find optimal solutions to a variety of problems.
The objective of a mathematical optimization procedure is to find optimal
solutions to well-defined and mathematical representable problems.
Typically, a mathematical programming procedure decompo:ses a problem
into two components: an objective function and a constraiint space. TheI objective function provides a measure of merit by which proposed
solutions are rated. T'he constraint space defines the set of acceptable
solutions. The goal is to find a solution triat is optimal with respect to the
objective function, but is consistent with the constraint space.

1.For instance, in a linear programmi .ng problem tthe objective function

is defined as a linear expression while the constraint space ik defined as a
set of linear equalities and inequalities. For instance,

i Minimize cl + .4c2

Subject to cl - 2xl 0
" c2 -xl =0

x1 : 10
cl >0
c2 > 0.

"In general, optimization procedures can be characterized in terms of
"a power/generality tradeoff. A problem solving technique is general to the
extent that it can be applied to a diversity of problems. It is powerful to
the extent that, when applied, it generates a good answer. Linear
programming techniques are very poweiful. Given tha: a problem can be
representcd as a linear program, efficient procedures exist for finding
globally optimal solution -- the best solution found in the constraint
space. Linear programming is an example of a very powerful technique
that has little generality. As expressions defining the objective function

i and constraint space become less constrained (e.g., allow nonlinear
expressions. discrete variables, lexicographic relations, etc.) generality
increases, but power decreases. These more general procedures are not

*guaranteed to find globally optimal solutions, and begin look instead for

locally (Optimal solutions.

7 7 BD)MVSQ-9) -07-2-IR

BDM INTERNATIONAL, INC.

I
The introduction of Al technology can be viewed as an extension of

this power/generality tradeoff. Al problem solvers tend toward the
extreme of the more general/less power end of this tradeoff. Most Al
planning system employ some form of satisficing strategy where the
system searches until it finds any solution that satisfies a set of
constraints. There is usually no explicit attempt to find a plan that scores
high on some measure of merit. On the other hand, Al planning systems
are very general. This is because much of the work in Al is oriented I
toward developing flexible knowledge representation schemes where it is
possible to express any knowledge relevant to the problem solving
domain.

1

Associate systems need to provide real time planning support.
Consequently, it is desirable to have systems that score high on both power
and generality. Power is needed simply because a system that does not
reliably generate good advice should be ignored (Lehner, 1989). Clearly,
optimization procedures are relevant here. On the other hand, it is hard to
circumscribe a priori :he types of constraints that may be relevant to a
problem. A mission planning system that is designed to find an optimal
path may be faced with a problem involving the coordination of two or
more missions, diversionary legs on a route, etc. Such constraints may not
be easy to represent in the constraint language of a powerful optimization
system. Flexible knowledge representation schemes, on the other hand,
have little difficulty with such constraints, As depicted in Figure 7-1,
associate systems should have embedded planning techniques that place it
well abo-.e the current power/generality curve.

7.1 Breaking the Power/Generality Tradeuff 3
One way to break the power/gcnerality tradeoff is to engineer

systems that in-corporate both heuristic and cptimization-based problem
solving methods. One architecture for achievnim, this is shown in Figure 7-
2. The basic idea is that the problem solving activities of a heuristic
problem solver can be guided oy the outputs of an optimization procedure.

Ilt coald be argued that knowledge-based problem solving does not fall into this I
category, since effective knowledge engineering should lead the problem solver to
generate good solutions. However this argument doesn't hold for the reason that
knowledgc-based procedures have no mechanism for determining if a solution foundI
is "goo. d. Consequently, there is no mechanism that guarantces avoiding worst case
results. I

7 8 BDMiVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

I
I
I
I

I
I
I

I Global
Optimnizers x

I <Desired for
Associate Systems

I Problem Local Optimizers
Solving

i Power

Satisficing Procedures

I Generality

i Figure 7-1: Power/Generality Tradeoff

7 9 BDDMIVSQ-91-0742-TRI

BDM INTERNATIONAL, INC. I
Initially a partial set of constraints is submitted to the Optimizer I

which aatempts to find an optimal solution for the partially constrained
problem. The principal output of the optimizer is an idealistic solution. It
is a solution that scores well on the measure of merit, but may not satisfy
all constraints.

The heuristic problem solver is designed to generate realistic
solutions that satisfy all relevant constraints. As noted earlier, by itself
there is no way to guarantee that the heuristic problem solver will
generate a solution that scores well on the measure of merit. There is
always the possibility that a substantially better solution exists.

In our approach we provide the heuristic problem solver with an
additional input - the idealistic solution generated by the Optimizer. The
heuristic problem solver is then given the task of finding a reaiistic
solution that achieves some percentage (say 90%) of the measure of merit
value of the idealistic solution -- a high-valued, realistic solution. If such a
solution cannot be found, then the heuristic problem solver will need to
generate additional constraints that can be added to the partial constraint
list of the Optimizer. With these additional constraints, the optimizer is I
rerun and a new idealistic solution is generated.

Although a variety of problem solving methods can be embedded inI
the heuristic problem solver, the most natural approach would be one
based on the plan transformation paradigm. The idealistic solution would
serve as the initial plan. It would undergo a series of transformations until
a plan emerged that satisfied all constraints. If a satisfactory plan does not
emerge, then the heuristic problem solver would identify some steps in the U
plan that appear to be essential. These steps define a partially specified
plan that becomes the additional constraints to be submitted to the
optimizer.

7.2 Relevance to Associate Technology I
The application of optimization techniques to mission planning

problems has been i'n active area of investigation for more than thirty
years. A number of mission planning systems already exist that use these
techniques. Unfortunately, these systems are subject to the difficulties we I
noted above. Specifically, these systems only consider some of the
constraints that are relevant to mission planning. For instance, the
Lockheed planner in the Pilot's Associate is an optimization system that
optimizes by minimizing fuel expenditure and site visibility. It does not

8 0 BDMIVSQ-91-0742-TR I

BDM INTERNATIONAL, INC.

- consider path vulnerability (visibility is a sun ogate), timing factors and
constraints, and coordination with other missions.

I Combining optimization and Al-heuristic reasoning techniques in the

= manner described above is one way to overcome the current limitation ofI optirnization -based mission planning systems. This will be discussed
further in Chapter 10.

I
i

I
I

I LGenerated Constraints

Partial Optimization
Constraints

Procedure Measure of

i Merit Goal

I Idealistic

Solution

I Satisficing

Procedure
_ _ __ Realistic and High

Additional Constraints Valued Solution

Figure 7-2: Architecture for Merging Optimization
and Satisficing Procedures

I
8 1 BDM!VSQ-91-0742-TR

Ii

BDM INTERNATIONAL, INC. U
U
I
I
I

I
I
I

I

I

I

I '

I

8 2 B DMV'SQ-91-0142-Tu

I BOM INTERNATIONAL, INC.

- CHAPTER 8

AUTOMATED PLANNING, UNCERTAINTY HANDLING
- AND DECISION THEORY

I
In this chapter we examine the relationship between automated

planning in Al and the problem of uncertainty management. Many
problem domains for which associate technology systems have been
proposed are inherently probabilistic and the uncertainties associated with
the various state variables and action outcomes need to be considered in
the planning process. Here we examine this relationship from two
perspectives. First, we look at the problem of incorporating uncertainty

I management into the planning process. Second, we examine the possible
application of uncertainty manag.-.ment techniques to the control of the

i planning process.

In the Al community, there are two competing approaches to the
problem of handling uncertainty. The first approach suggests that
uncertainty is a matter of degree, and that uncertainty handling is a
problem of calculating belief values. Among the strongest proponents of
this approach are the Bayesians, who argue that a rational system for
behaving in uncertain situations must act as though it maintains a set of
beliefs values that conform to the probability calculus. The second

I approach argues that uncertainty handling is a matter of making and
revising assumptions. At all times behavior conforms to a set of
assumptions about the current wvorld state that iiced to be revised if
evidence surfaces that is contrary to the current assumption set.

I 8.1 Uncertainty Management with a Quantitative Belief Calculus

I A variety of calculi have been proposed as a basis for calculating
belief values. In thiis section we will examrine only one of these - the
Bayesian approach. Others may have their merits, but the main points to
be made_, here can be (lone so by examining just the one approach.

13 avesianism is a school of' though that argues that a rational system
of belief values must conform to the probability calculus, and that upon
learning new information (evidence), belief values should be updated
using Bares rule. This rule asserts that given two Ilypoiheses (Ill and 112)
and some evidence item (1,), then the relative bel ief given IE should be
i I...tuisuing the Ilde:

S8 3 BDLM/VSQ-9 -()742-TR

BDM INTERNATIONAL, INC. i

I
B(H 1E) B(E!HI)*B(H1)

B(H21E) B(EIH2)*B(H2).

It is important to note that there is nothing in the Bayesian approach
that limits its use to situation where the true probabilities are known.
Indeed many proponents of the Bayesian approach would argue that the
notion of a "true" probability is itself spurious. The statement "The
probability that the coin will land Heads is .5" is a statement expressing
our degree of belief that the coin will land Heads or Tails. The coin itself
will either land Heads or Tails.

When applied to planning problems, belief values are merged with
outcome utilities so that choices that maximize expected utility can be
made. To illustrate how this works, consider the simple route planning
problem depicted in Figure 8-1. A robot, initially at x,y coordinate (6,11)
must find a path to the refueling cell at (5,5). At the refueling cell is one
hundred units of energy. It cost one unit of energy to move into a blank
cell, 200 units of energy to move into a dark cell. The cost of moving into a
cell marked with a ? is either I or 200 energy units. The robots objective
is to maximize its energy store. Finally, when a robot is next to a ? cell, it
can use a sensor to test whether or not the ? cell is a blank cell. When the
sensor is working reliably its reports are completely accurate. When the
sensor is not working, it reports either "Clear" or "Dark" about equally
often. independent of whether the ? cell is truly Clear or Dark. The cost of
a sensor test is 20 energy units.

Now we include some belief values. Of the 100 non ? cells, 40 are
dark, so we initially assert B(ClearlCell is type ?) = .6. The sensor, because
of prior testing, operates reliably about 80% of the time.

We now examine the plan proposed in Figure 8-2. The lower portion 3
lays out the possible events sequences that may occur if this plans is
executed. Each complete path on this tree is called a chronicle (Hanks,
1990). The first chronicle asserts that the robot will go several steps to I
Coordinate (6,6), then to coordinate (6,5) which will be a blank square, and
then to coordinate (5,5). Chronicle two is the same except that (6,5) is
dark. The expected utility of this plan is calculated by multiplying the U
probability of each path times its cost. For Plan i, this gives us

I-U(PIAN 1) = .6*(100-7) + .4*(I()0-206) = 13.4. m

84 BI)MiVQ-91-0742-IR

I BDM INTERNATIONAL, INC.

I
I
I
I
I

II ,? Ri
I 11

I9
8

I7I 5 •_l,

6

1 12

1 2 3 4 5 6 7 8 9 10 11

3 Figure 8-1: Probabilistic Planning Problem

I
8 5 B3DM1ISQ-91-0742-TR

BDM INTERNATIONAL, INC. I
I
I
I
I
I
U
I
I
I

Move to 5,5 0-100I

I

LMove to 6,6 Move to 6-
-5 10-1 .4 -200

I
I

Figure 8-2: First Chronicle for Robot Planning: Prbieo J

I
8 6 BDM/VSQ-91-0742-TR

II

I BDM INTERNATIONAL, INC.

I An alternative plan is to go to (6,5), get a sensor reading on (6,6) and

then go around if the sensor reports "Dark". Figure 8-3 lays out this plan,
I along with the probability that each step will occur. The probability that a

sensor reading will report back "Clear" is calculated as follows:

I B(CClear") =
B("Clear" Clea-.r & Rt 1iable)*B(ClearlReliable)*B(Reliable)

+ B("Clear"IDark & Reliable)*B(DarklReliable)*B(Reliable)
+ B("Clear"lClear & -Reliable) *B(Clear-Reliable)*B(-Reliable)
+ B("Clear"IDark & -Reliable)*B(DarkI-Reliable)*B(-Reliable)

I 1.0*.6*.8 + 0.0*.4*.8 + .5*.6*.2 + .5*.4*.2

I = .58.

I
II

I 83Movýe to >~ +100

6,6I0-.58 1.0

-0 0-1

I
I tMovesto 7 Move° - Mve to

I7.2 5,2 5,5 +100
-4 -2 -3

I
i FirUjt.~,,- SeconUl Uronclc for Robo. Hlamining Problem

I

l*8 7 B3DM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC.

The probability that (6,5) is in fact Clear, given that the sensor I
reported "Clear" is calculate using Bayes rule:

B(Clearl"Clear") =

B("Clear"IClear)*B(Clear)/B("Clear") 3
[B("Clear"lClear & Reliable)*B(ReliablelClear)

+ B("Clear" lClear & - Reliable)*B(-ReliableiClear)] * B(Clear)
B("Clear")

[1.0*.8 + 0.0*.21*.6/.58 = .83. 3
This gives us B(Clearl"Clear") = .83. Plan 2 has three chronicles with an

expected value of 84.3. This, in turn. indicates that the expected value of

incorporating the sensor test into the plan is 40.2 - 13.4 = 26.8.

This p!an can be further elaborated by adding in a second sensor test I
if the first test indicates "Clear". As shown in Figure 8-4 this plan has an

expected value of 38.5. A second sensor test is more costly than the

expected gain.

As this example indicates, probability calculations can be quite useful I

in determining what steps to add to a plan, and for calculating the
expected benefits and costs of each step.

I --

I
I
I-
I
I
I -

S8 8BIDM/VSQ-91-0742-TR I

BDM INTERNATIONAL, INC.

0

I)L 0

II

C- >to)

2_) -0

cj CD C)>

7"-) 0:- - aflI

II

£ I-

0 L

Lo4

- 4-!

_ 6 0

7

8 9 BDM/VlSQ-91-0742-TR

I U

BDM INTERNATIONAL, INC. I

8.2 Apl:,ications of Decision Theory to Automated Planning I

In the last few years, there has emerged a resurgence of interest in 3
the application of decision theory to automated problem solving. Below we

briefly note some directions this work is taking.

Decision Theory-based Decisions - The most direct application is to

use expected utility calculations to select actions. This was illustrated inl
section 8.1. Unfortunately, this approach may be difficult to estimate since

it may require an exorbitant number of probability assessments. One

approach to overcoming this problem is to implement a qualitative

inference system that conforms to the probability calculus (Wellman,

1990). Alternatively, one can develop procedures for constructing small,

problem-specific decision models (e.g., Laskey, 1990: Laskey and Lehner, 3
1991;. Peot and Breese, 1991). Reasoning within these models involves

explicit probability and utility calculations. However, reasoning about

these models may be heuristic.

Probabilistic DIomain Models - Probabilistic models have been
proposed as an alternative to the simplistic action models embedded in
STRIPS-like planners. These probabilistic models can then be used to

reason about the probability of alternative futures (e.g., Dean and
Kanazawa, 1989;). Much of the research in this area is focused on efficient

probabilistic projection, where computation is focused only on relevant and
probable futures (e.g., Hanks, 1990)

Rationalization of lteuriutic Procedures - Automated planning

research is traditionally based on symbolic reasoning techniques. This has

made it difficult to relate this research to decision theoretic notions of

planning and action selections. Recently, several researchers have

attempted to provide a general mapping between concepts relevant to the

symbolic approach and decision theory. Much of this work focuses on the

relationship between symbolic goals and utilities (Haddawy and Hanks,
1990; Wellman and Doyle; 1991).

Decision Theoretic Control - Here the objective is to use decision

theory to select which planning steps to execute next. The VOl example

provided in section 8.1 is an example of this form of control. In particular,
it is an example of reasoning within a decision model to make decisions as
to the next best step to execute. 1 The work of Tom Dean is a good example I

1 As long as the system is reasoning from wvithin a decision model. then decision

thcory does not formally distinguish actiolns and control decisions. 3
90 BDM/VSO-91-0742-TR I

I BDM INTERNATIONAL, INC.

I of this line of research (Dean, 1990). An alternative approach is to 1'se

probabilistic knowledge about an planning system to make control
I decisions about how planning should proceed (Lehncr, 1991). In this

approach decision theoretic reasoning is used at the metaplanning level
and can be applied to controlling problem solving procedures that are not
themselves decision theoretic.

I 8.3 Uncertainty Management using Reason Maintenance

An alternative approach to planning under uncertainty is to make an
explicit set of assumptions which can be later retracted if found to be
invalid. The problem of keeping track of assumptions and the deductions
that depend on each assumptions is called reason maintenance or truth
maintenance. Systems for tracking assumption fall into two categorics.
Reason Maintenance Svstems (RMS) maintain ý, single, consistent set of
assumptions and deductions (Doyle, 1979). In an RMS, when a new
conclusion is made that contradicts a previous deduction, the RMS will
identify the assumptions upon which the previous deduction depcnds;
select one or more asstuimptions to retract; and remove all other deductions
that depend on those assumptions. In this was, the RMS always maintains
a single, consistent view of the world. Assumption-based Truth
Maintenance Systems (ATMS) simultaneously keep track of all
assumptions and deductions (DeKleer, 1986).2 For each deduction, the

I ATMS will maintain a label that specifies them minimal assumption sets
under which the deduction can be derived. Furthermore, the ATMS tracks
all inconsistencies in the assumptions. As a result, an ATMS can quickly
determine (1) all deductions that are justified by an arbitrary set of
assumptions, and (2) all assumption sets which justify a deduction.

I Although reason maintenance is a major research area in Al, it has

had relatively little impact on the planning research community. This is
I somewhat surprising since much of the research in the area was initially

motivated by a desire to solve the qualification and frame problem in
automated planning. The most direct application of reason maintenance to
automated planning is found in Morris (1987). In addition, temporal data

I 2 Wc should note here that this is an inhercntly limited capability. Systems for
reason maintenance of propositional systems. Thcy simply record the sequence of
deductions made by a problem solver, but have no real problem solving capability of
their own. For instance, if the problem solver deduced and submitted to the reason
maintenance system F(x)-->P(x), and F(A), the reason maintenance system could not
deduce P(A). All it could do is record the fact that problem solver used the strings

I 'F(x)-->P(x)" and "F(A)" to justify P(A).

9 9 1 BDM!VSQ-91-0742-TR

i

BDM INTERNATIONAL, INC.

base management svstel•s (e.g., Dean and NMcDermott, 1988) usually I
embed sonic form ot reason maintenance.

8.4 Merging Probabilistic and Assumption-based Reasoning I

For many the appropriate solution to uncertainty management is to

merge the quantitative and qualitative approaches. Several ways to do

this have been proposed. So far none have proven very satisfactory. One

popular approach (see Laskey and Lehner, 1989; 1990) is to use an ATMS

to keep track of assumptions, and then to attach probabilities to the

assumptions. The belief in any set of assumptions is calculated by

multiplying out the probabilities of each assumption. The belief in atiy

proposition is calculated by summing up tile beliefs of the assumption sets

that imply that proposition. Unfortunately, as shown in Laskev and

Lehner (1989) this approach is formally equivalent to the Shaferian

calculus for belief management and is therefore subject to all of the

problems associated with the Shaferian calculus (Pearl, 1990).

8.5 Relevance to Associate Technology.

8.5.1 Plan Generation

As discussed above, domains such as mission pianning are generally I
probabilistic. Automated planning systems that address such domains
should have an explicit mechanism for addressing uncertainty handling

problems. In general, there seem to be three basic approaches to dealing
with uncertainty.

Ignore Uncertainty - Simply ignore uncertainties, generate plans

assuming a certain situation description, and replan later as

necessary.

Make Assumptions Explicit - This is similar to the previous

approach except that the assumptions that were used to generate a

certain situation description are made explicit, recorded an(

tracked. In this way the conditions under which replanning ,

required can be identified early.

Make Uncertainties Explicit - The probabilistic reasoning approach I
reqdires that the levels of uncertainty be made explicit. Plan

wneration involves explicit calculation of the probabilities and I
uncertainties associated each action.

I
9 2 iIDM,/VSQ-91-0742-TR U

I BDM INTERNATIONAL, INC.

I Each approach has its advantages. '[lic first approach is clearly tile
most c,)mputationallv traclable. If tile domnain is such that there is little
cost as.ýociate xith replanning, then it seems preferablc. The second
approach adds some computational burden, but it also makes it easier to
ilfocus rcplanning activities. The third approach can add a significantI computational burden. Ilowcver. it is the prectured approach i the
domain is such that there are severe negative costs associated with

I "mistakes" in the plan.

8.5.2 Replanning and Real-time Planning

I Incorporating uncertainty management into automated planning is

still a relative new area within the automated planning community. It is
not clear at this point the exrcnt to which it will eventually promonle or
prevent real time planning and replanning. If plan generatnu, includes
probabilistic reasoning, then this will obviously slow thines dowvn. On the
othei hand, as discussed above decision theor" procedures can be used
to control the plnning process. thereby focusing the plaiming process
important planning st.ps. This is clearlv an area that deserves further
investigation.

II
i
I
I
I
I
I
I
i 9 3 D/V-9-72T

BDM INTERNATIONAL, INC. U

I
I

I
I
I
I
I
I

I

I
I
I
I
I

9 4 BI)M/V SQ-9)1-0742 ' iz

BDM INTERNATIONAL, iNC.

N CHAPTER 9

HARDWARE ISSUES IN AUTOMATED PLANNING

I This chapter summarizes the results of an investigation into the
applicability of various processor architectures to planning and,
specifically, mission planning. This investigation of hardware technologies
was initiated in August, 1990. The activities under this tasking included
surveys of the academic and trade literature for application of high
performance hardware to the planning problem or closely related
applications. The examination of hardware directions also sought
promising possibilities not yet being pursued for planning. Focus was on
high performance engines and techniques which have been applied only to
narrow applications, but which may prove applicable to planning. Specific
points of departure for the search included machine intelligence, logic
programming, parallel processing, and general literature on computers and
component devices.

I The perspective guiding the examination of hardware technology is

the hierarchical nature of technologies upon which computer based
problem solving is founded. Figure 9-1 shows such a hierarchy for the
planning problem. Each level is an abstraction that defines the nature of a
machine, such that lower levels need not be considered. For example, the
abstractions in a register transfer language allow design at that level
without concern for the internal gate or transistor structures internal to
the registers, multiplexes, etc. of the components, at least. to the first order.
Likewise, a user of assembly language need know only the computer's
programming model, not its microcode or internal bus structure. Higher
level languages extend this hierarchy farther toward the problem domain.
For planning, these may' be procedural or declarative. The higher level
languages are general in purpose, being used to express in executable form
techniques applied specifically to the planning problem.

1 9.1 Planning Technology Hierarchy Perspective

SThe benefit of' such a hierarchy is that each level of abstraction is a
manageabic sicp towards useful problem solving. Progress is made by
successively adding abstractions toward the top which reduce the garU between means and ends. The cost is that, at each level of abstractioi., all
possible ,pcrations at the next higher level must be supported, rather than
only i, specalizcd task at hand. This carries a cost in efficiency which may

95 BI)M/VSQ-91-0742-TRI

BDM INTERNATIONAL, INC. i

be as high as an order of magnitude per level. Research and development
within each level aims at improving performance without changing the
boundary specifications, reducing the cost of the level and the
computational power of all levels above it. Other developments have
allowed levels to be skipped or combined, thus cutting out inefficiencies
related to abstraction boundaries. The Lisp machine cuts out conventional I
assembly language; RISC processors in effect cut out a level by combining
assembly and microcode, and shifting the interface to the higher level

langua~ge compiler downward.

The Planning Problem

I
Techniques, decomposition

Planning I I
lnnin Algorithms Declarative lang.

Proc. Languages I
/II I Prolog or 3
/lachine Language Expert

SIMD Systems
or bit Dlc I EngineI

or bitsliceMicrocode

I I
Registers and Busses

I VLISI
Logic Devices tools

I1 IElectronics and Materials

Figure 9-1 Computer Technology Hierarchy for Planning i

If one can skip over one or more levels of abstraction in the diagram, 1
considerable efficiency in speed, weight, power use, and size may be
gained. A hardware device that directly implements a planning algorithm
using dedicated registers and busses avoids all of the levels associated
with the von Neumann computer. One may expect perhaps three orders of
magnitude performance benefit, given comparable hardware technology at I
the register and gate level. Only one device of this sort was found, the

96 BL'M/VSQ-91-0742-IR

i BDM INTERNATIONAL, INC.

I Lockheed Zap processor. Others may weli exist but as proprietary devices

may not have been published. It is also possible to gain considerable
I benefii by using a custom processor of the bit slice type. in effect

implementing the algorithm with custom microcode.

I Less planning specific applications of hardware technology include
specialized engines that execute particular languages in which planning
problems may be expressed. These include Lisp processors and processors
dedicated to executing declarative languages. A number of Prolog and
expert systems engines were noted which generally gave about an order of

I magnitude speedup over more conventional processors. Some specialized
processors were dedicated to the support of new higher level abstractions,
such as fuzzy logic.

One approach to performance not shown on the hierarchy figure is
parallelism. Parallelism can be inserted at a number of different levels.
SIMD (Single Instruction stream, Multiple Data stream) parallelism takes
place at the microcode and possibly the register/bus levels, in that the
single controller must account for interactions among the different
processors. MIMD (Multiple Instruction stream, Multiple Data stream)
parallelism occurs above the machine language level. The problem solver
may explicitly invoke parallelism by designating it in his functional
decomposition, or it may be invoked at or unseen below the language level
with processors managed as resources. Parallelism allows the use ofI machines with much greater raw computational horsepower, but adds a
level to the hierarchy. The costs of that level are both speedup limitations
like bottlenecks that limit efficiency and changes in the computationalInodel (e.g. memory access restrictions) that restrict the range of
expression in the next higher level.

I A bigger problem with parallelism than loss of efficiency is that for

many forms of parallelism the intermediau abstractions to bridge the gap
to the planning problem domain have not vet been found. Techniques for
applying- MIMD to planning are few, and for SIMD even fewer. The classes
of SIMD that restrict communications to adjacent nodes, or MIMD machines
having very tightly synchronized communications (e.g. transputer or Warp
arrays) are difficult to apply to amorphous problems like planning. 'ITo
date they have been applied to array organized problems. Optical
machines are eve, more of a challenge. Yet these technologies have
enormous raw potential, if the abstractions necessary to apply them can be
found.

9

Ii
9 7 BDM/VSQ-91I-07,42-TR

I

BoM INTERNATIONAL, INC. m

9.2 Survey Results i

The survey was conducted during 1990 and 1991. Various journals
and conference proceedings in relevant fields were surveyed. The findings
below fall into categories illustrated in Figure 9-2. Note that some
incorporate more than one element of interest, parallelism together with a
specialized processor. The projects and products cited should be regarded
as representative rather than exhaustive.

General Purpose Uniprocessors I
Special Purpose Processors

Planninl I
Processors Prolog Expert Fuzzy Logic Planning
Processr Engines Systems Processors Proceor. ,-~ngines I

SIMD MIMD Uniproc. Digital Analog

KCM PLUM Pesa-l KCM Togai FXLoan YFC-1 ZAP
FC110

Figure 9-2 Representative Examples of Hardware Applicable to Planning

9.2.1 Zap Processor:

This is the only instance of specifically planning hardware known. It i
was developed by Lockheed and is proprietary, with most details not being

releasable. The information given here was made available by Marty
Broadwell of Lockheed, Georgia. The ZAP is a single 6"x 6" VME board
special processor for the dynamic programming algorithm. The planning

space represented is 128x128x8x8x8, with the dimensions used to
represent latitude, longitude, altitude, heading, and bank respectively. A

raster-like optimization process builds a cost matrix from a seed point to

all other points in the space. Templates to represent cost components, such

as a cookie-cutter pattern for exposure to a missile site, can be added or

98 BDM/VSQ.91-0742-TR

BDM INTERNATIONAL, INC.

deleted very quickly. The processor is built with off-the-shelf
components. Programmable Gate Arrays are used for the processor, that
searches a large amount of memory at a time. The current version of the
ZAP searches at 2 to 3 times the speed of an R3000 (25Mhz RISC), a new
model will be 30 times faster and have added flexibility. This will give a n
execution time of less than a second for a full scale problem, or faster for
smaller scaled problems.[1]

II
9.2.2 Parallel Prolog:

Ramkumar and Kale give benchmarks for a variety of MIMD parallel
Prolog implementations on Alliant, iPSC/2, Multimax, and Symmetry
machines. Speedups were near linear for the tests with up to 20
processors, though all showed single processor performance nearly always
worse than either single processor implementation used for comparison
(SB Prolog on Multimax and Quintus on a Sun 3/60). The uni-processor
implementations did not use "cut". The benchmarks here appear
promising, but are for very simple problems (Fib26, Qn9, Fib+, and Occur)
and with relatively few processors [2]. Saletore and Kale give some
additional benchmarks [3]. Shyam Mudambi shows the Aurora OR-
Parallelism based parallel system achieving 10 times the performance of a
Sun 3/50 on a 40 processor BBN GP-1000. Some benchmark problems
bottlenecked quickly, though [4]. Additional Aurora benchmarks are given
by Peter Szeredi [5]. Ashok Singhal and Yale Pratt describe PLUM (Parallel
Unification Machine), a system that performs Prolog Bookkeeping and
Unification in parallel to give a speedup of 1.7 beyond that available
though other parallelism [61[71.

Recently, a Transputer based commercial parallel PROLOG product
from Paralogic has been announced. Both AND and OR type parallelism is
used. Processor boards bearing 5 Transputer processors are available for
the IBM PC-AT [8].

9.2.3 Specialized Prolog Engines

A number of examples of specialized back-end Prolog or production
rule crunching machines were found. For example, I-1. Benker et. al. report
on a fairly complex board level processor specialized for Prolog. It runs
about 5 to 10 times faster than Quintus Prolog on the SUN 3/280, the
Quintus Prolog seeming to be a commonly cited basis of comparison [9]
(The Sun 3/280 is 68020, 25Mhz with 20Mhz FPU.) The KCM type

9 9 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. I

approach, upgraded for more recent improvements in component I
technology, would likely not compare as favorably to RISC type
processors.) Konagaya, et. al. report on a processor that runs 1.5 times I
faster than Quintus Prolog on a Sun 4/280 despite having a 200ns clock vs
66ns for the Sun. Interpreted performance (with "Dynamic Clause
Compilation") runs 6 to 8 times faster. This is part of the "Fifth Generation"
project. [101

A VLSI approach to a specialized Artificial Intelligence oriented I
processor described by Maeda et. al. takes a 5 stage pipelining approach to
achieve as much fine grain parallelism within the processor as possible.
The IP1704 processor achieves a performance of 1.5M Prolog LIPS
executing the Append benchmark, using 11 clock cycles per inference. The
processor also can execute Lisp [32].

Such processors follow Von Neumann or Harvard architecture
principles, but incorporate specialized elements or greater fine-grained
parallelism to give an advantage. About an order of magnitude
improvement over general purpose processors seems to be the limit of
such dedicated special purpose processors for most problems. That is the
range of performance found in literature surveyed to date. This advantage
would seem to be shrinking for a number of reasons, including differences
in time to market, the necessary customization of hardware for the
specialized engine requiring a greater lead time, and the lesser resources
available for development of a more specialized engine. The trend seen for
specialized Lisp processors is likely also applicable to processors
specialized for Polog and other languages. The mass market price
benefits, increasing reiative capability, and software advances for general
purpose micros has swamped most of the advantages of specialized Lisp
Machines in the marketplace. 3

9.2.4 Production Rule Systems:

A number of papers about processors for production rules (as ini
expert systems) rather than Prolog were found. PESA I, a "Parallel
Architecture for Production Systems" was an intelesting example. Up to
32 MIMD processors are arrayed in layers which process rules in a
somewhat pipeline manner. The last stage of operation is "Conflict set
resolution". Speedup drops greatly beyond 8 processors, however.
Performance of 8000 rule firings per second was achieved, using 1.6 MIP
processor elements. A limit of about an order of magnitude speedup over
sequential seems to apply to both Prolog and rule based systems [111. The

0 0 BDM/VSQ-91-0742-TR I

BDM INTERNATIONAL, INC.

I processing of production rules in this system follows the "Rete" algorithm

in which the compiler maps rules to an acyclic data flow graph, then the
rules are interpreted. TFhis was also true for the system developed by
Anurag Acharya and Milind Tambe [121. The rule system used for both
was OPS5. Benefit is gained by storing the partial results of matches from
previous cycles to use in later ones (since only a small part of working
memory changes on each cycle) and by sharing the results of computations
shared by iules being simultaneously processed. These principles seem
applicable to sequential as well as parallel processing.

9.2.5 Fuzzy Logic:

I A starting point for surveying hardware for fuzzy logic is Gupta and
Yamakawa [13]. It contains papers describing elements that contribute to
fuzzy computing engines. These include inference engine elements,
memory, and controller [14]. A fuzzy flipflop is described 115]. However,
all of this is very far from practicality for the Pilot's Associate program. A

i number of software based fuzzy logic systems exist, which were not
surveyed given the hardware focus of this effort. An example is the VAX
based ERNEST [161, which includes "arbitrary procedures to allow
probabilistic and fuzzy reasoning". An example of a specialized fuzzy logic
processor applied to an application is FXLoan, a system that evaluates loan
applications. Although this system is simulated (as of the publication
date), the hardware design shows the features necessary for fuzzy logic
processing [34].

I Togai Infralogic, Inc. produces a family of Digital Fuzzy Processor

boards for VME and PC/AT busses as well as a stand-alone modules. A
I special fuzzy processor chip is advertised as processing over 370K two-

premise fuzzy production rules per second (or over IM Boolean rules). The
VME product uses four such processors. Considerable software support for
development is available. Details of the processor's internal structure were
not available,[29]

I 9.2.6 Other Specialized Hardware:

Perhaps the most interesting specialized processor is the IXM, a
multi-processor engine for implementing a semantic net [171. A prototype
handles 64K links using associative memories. It has 32 processors and

I 128K words of 40 bits. The language IXL is a Prolog superset that includes
predicates for semantic network processing. The architecture is essentially

I
1 0 1 BDM/VSQ-91-07,42TR

I

BDM INTERNATIONAL, INC. I
SIMD with a pyramid of connections. This was one of the most innovative n
pieces of work found. I
9.2.7 Application of SIMD to Planning:

Delivery of the greatest amount of raw computation for a given price
seems to be in SIMD type architectures. However, planning applications
have been hard to find. One example is from the robotics domain: RAMBO. I
The Connection Machine is used to simultaneously determine, for several
trajectories from one point in a target body relative space to another,
several possible paths associated with different times to make the
transition. For each discrete time step along each path derivatives are
calculated in paralle!. The path having the shortest time yet not exceeding
limits on the derivatives, is chosen (30].

I
9.3 Other Hardware having Potential Application to Planning

The machines discussed in the preceding section were designed to be n
used for machine intelligence types of problems, of which planning is an
example. In addition, machines exist which do not currently fit in the
planning technology hierarchy, but which may prove useful for planning if
appropriate mappings from the planning domain can be developed. In
some cases, the machines discussed are already being applied to closely 3
related problems. This is especially true for machines.applied to vision. U
9.3.1 Vision Architectures:

One thread of potential application that seems worth pursuing is the I
possibility of mapping between the planning problem and the machine
vision problem. If such a mapping can be found, the hardware (and
software) techniques currently being applied to machine vision and image
understanding may be applied to planning also. Dechter, Meiri and Pearl
describe the application of graphs to constraint satisfaction, which is seen
as a key part of the planning process [18]. It may prove possible to show
formally that vision and planning are related using graph theory. Such
proof would establish the applicability of vision oriented architectures to
both problems.

The computer vision community has made considerable progress I
toward high performance hardware for vision computation. and towards

102 BDM/VSQ-91-0742-TR

I BDM INTERNATIONAL, INC.

I benchmarking. Performance for various vision algorithms on several
sequential and parallel machines has been reported [19]. Vision
algorithms have been mapped to a variety of general purpose MIMD and
SIMD computers and to special purpose processors. Commercial products
such as KBVision (which incorporates much of the developments from the
University of Massachusetts) are emerging [201. The extent to which the
planning problem can benefit from this extensive work should be a high
priority for investigation.

A number of papers have described mappings of graph and image
related processing onto specialized processors built for vision algorithms,
but which are in fact SIMD machines with more general capabilities.
Heaton, Blevins, and Davis describe a 128 processor SIMD chip having a 22I bit control bus and capable of 20Mhz operation. This 1.1 Million device
chip uses 1 micron CMOS and executes an instruction every clock cycle

i [21]. This and similar SIMD's meant specifically for image work, such as
the much earlier 72 processor GAPP chip (Martin Marietta and NCR) tend
to have memory that is on-chip and thus smaller and faster than the more
"general purpose" SIMD's such as the Connection Machine (22]. The paucity
of memory pet processor gives such machines a different characteristic;
they simply do not hold enough data to support the usual message
oriented graph abstractions. They are usually limited to a mesh
interconnect structure. However, they might prove capable of supporting
other network or planning domain abstractions, in which ý ase their
relative,. high computational advantage can be brought to bear.

Widespread application of image processing machinery is resulting in
reduced prices for commercial specialized hardware systems, some of
which might be useful for t,,e planning problem. For example, VZITec Inc.
has announced a $20K single board imaging system that performs at 175
MOPS and supports C, Motif, and X-Windows. [23].

9.3.2 Related Domain Hardware:

I High performance hardware has been applied to a number of other
problem areas which may have a relation to planning. For example, speech
recognition and natural language processing involve massive search, as is
also true of planning. M. Motomura et. al. of NEC describe a chip used for
word search that is capable of finding word ent;ies that are approximate
matches. This content addressable approach allows 2048 words per chip,
and handles an input character per clock [24]. Similar kinds of search
mechanics may be useful for planning. A. St6lzle, et. al., describe a

1 03 BDM/VSQ-91-0742-TR

I

BDM INTERNATIONAL, !NC. I
processor that implements the Viterbi algorithm for finding the most I
probable state sequence for the utterance [251. A comparable way of
considering traversing a series of states in planning might allow the use of
this or similar high performance hardware.

The fruits of the VHSIC program may prove applicable as well. 3
These and other high performance processors are targeted to signal
processing applications. A news report of the joint Motorola-TRW CPUAX
central processor unit, a VIISIC phase 2 product, credits the 1.5 x 1.6 inch I
chip with 4 M transistors, and 200 MFLGP performance. It uses self-repair
redundancy, requiring 61 of 142 macrocells for full capacity. This
development points to the probability of increased capability for the other
hardware approaches already mentioned [26].

Parallel database and query systems research has produced
hardware for database machines which may well be applicable to planning.
Resources did not permit an investigation of this field [33].

9.3.3 Neural Networks I
Artificial Neural Systems have to date been applied more toward

deductive processes such as diagnosis and recognition than constructive
activities such as planning. However, JPL has reported prototype
application to both path planning and to the allocation of resources [28]. I
There are numerous implementations of neural networks involving analog
or digital hardware or simulation on more general purpose machines.
These machines were not surveyed.

9.3.4 Other High performance Hardware I
This last category includes recently emerging hardware with

relatively limited scope of applicability but enormous computational
power. The problem is the development of abstractions, programming
techniques and problem mappings, that would allow the potential of these I
machines to be applied to planning. The following description is intended
to be illustrative of this category. 3

The "Datawave" chip developed by Intermetall GmbH/ITT is
essentially a MIMD processor intended to be arranged as a Mesh with 3
FIFO's connecting adjacent processors. Each chip includes a register file,
64x48 bits of program RAM, and ALU and Multiplier arranged with four

1 04 BDM/VSQ-91-0742-TR

I

I BDM INTERNATIONAL, INC.

I busses in the chip to allow sim0.1taneous use of resources. The clock is 125

Mhz. The chip is reported as expected to seil for $30 to $40 ini a 124 pin
j plastic package. A 4x4 array is expected to achieve 4 billion operations

per second and throughput of 750 Mbytes per second applied to video
problems. This illustrates the enormous raw computational power of
current technology now being applied to highly structured problems. (The
iWarp is another product, which had its origins in the DARPA sponsored
Warp project at CMU, that also falls into this general category between
SIMD and MIMD, as does the Transputer.) Optical processors are perhaps
even more powerful in raw computational power, but even more difficult

I to apply.

Mapping of planning algorithms directly to hardware, as with the Zap
I processor, now entails custom design requiring considerable time and

resources. This is avoided normally bv using programming abstractions to
* adapt more general purpose, but less efficient, computational machinery to

the task. A possible future alternative is compilation of the algorithms to
hardware, in the form of VLSI. Some pieces of the infrastructure to
support this concept, silicon foundries, design-to-test techniques, design
frames and system kits already exist. The key remaining link is
translation of a problem oriented software description into hardware

I definition. Some progress is being made on this front. Barada and El-
Amawy have developed a methodology for mapping a restricted class of
algorithms to VLSI. These are forms having a series of nested iteration
loops around a series of if/else if rules 131]. This form may be appropriate
for declarative languages such as the constraint languages of interest for
planning, or a subset of them. Aside from custom VLSI, a range of semi-
custom fabrication techniques exist which may also serve as vehicles to
migrate algorithms to hardware, if the compilation techniques can be

I developed [351.

9.4 Conclusions and Recommendations

Very little hardware work specifically focused on planning was in
evidence. It is quite possible that others exist that are proprietary or
classified. A number of specialized machines to support declarative
languages such as Prolog were found, but these tended to focus on early
declarative language forms and benchmark well known simple programs
like n Queens. No hardware aimed at more general constlaint languages,
such as Prolog 3, was found. Processors for neural nets and fuzzy logic are
emerging which may have application to the planning problcms of interest
to Pilot's Associate. A mapping from the constraint language to the

105 BDMiVSQ-91-0742-TR

I

BDM INTERNATIONAL, INC.

hardware used for fuzzy logic might be possible. The JPL ieport shows at I
least some capability for neural nets in planning. The one processor
dedicated to planning, the Zap processor, uses a dynamic programming 3
algorithm which addresses only part of the overall planning problem.

At the same time, there is an explosion of raw computational
capability underway in SIMD or SIMD-like MIMD processors. These have
so far proved most effective in highly structured problems of matrix form
that maps directly to the processor array, such as signal and image I
processing. Figure 9-3 illustrates the goal of finding means, in the form of
new abstractions or adaptations, necessary to increase the applicability of
these machines for planning. Where it is possible to map a planning space
to a spatial grid, as is also the case for the Zap processor, such machines
can be usefully applied. One can project a two dimensional map onto the
processor array, for example, and vary constraints by flagging processors
as unavailable for path traversal. Mapping more amorphous problem
configurations such as graphs is more difficult. The best use of these I
maechines in a manner comparable to that needed for planning appears to
be in the domain of machine vision.

The goal is to find abstractions that
"allow real time planning problems to 3

SI • map to high powered hardware •
S[• that already exists, but is now [

too narrow in applicability • I

0

A I
I- I I

o I I

SI

CISC RISC MIMD CM-type Array Custom Custom
SIMD SIMD Processor VLSI I

uniprocessors parallel machines
Figure 9-3 Goal of Applying Highly Parallel Forms of Computers I

I
1 06 B DN/VSQ-91-0742-TR

I

I BDM INTERNATIONAL, INC.

- The following recommendations are made in the interest of

incorporating high performance hardware into the planning technology for

I Pilot's Associate:

1. Look for mappings from the planning problem domain to the vision
domain. so that vision algorithms and hardware can be exploited f3r
planning as well.

I 2. Look for other (more direct) mappings of planning onto SIMID and
tightly coupled SIMD-like MIMI) machines. The search should target both
simple grid SIMD machines and those having more complex routing
structures.

I 3. Investigate tic possibility of generalizing on tile Prolog and Expert
systems engines to handle more general constraint languages. Determine

i whether fuzzy logic engines can be used for this purpose.

4. Investigate implementing primitive' oporations or algoxithins of
planning as custom processors and, ultimately, VLSI. Monitor emerging
hardware tools such as programmable logic for opportunities to support
custom approaches at mninimum infrastructure cost.

5. Monitor the application of Neural Nets for suitability for planning.I
9.5 References

I [The references for this chapter are numerically deunted and located

in the reference section of the publication.

I
I
I
I
I
I

1 07 BDM/VSQ-g1-0742-TR

I

BDM INTERNA'TIONAL, INC. I

I
I
U
I
I
I
I

I
I
I
I

I
I
II
I
I
I

1 08 BDMiVSQ-91-0742-TR

I

BDM INTERNATIONAL, INC.

I CHAPTER 10

3 SNSUMMARY AND RECOMMENDATIONS

I In this document, we have: (1) reviewed the principal paradigms for
automated planning, (2) explored the relationship betweer AI-automated
planring technology with some related technologies (decision theory,
optimization theory, hardware engineering), and (3) examined the
relevance of each class of techniques to associate system technology. With
regard to (3), each chapter identified how various automated planning
techniques can be applied to associate systems that provide real time
planning support. In this section we summarize these potential
applications and make our final recommendations.

Planning as Heuristic Search - Most route planning systems draw from
this technology. In many cases, A* or some other global search procedures
becomes the core algorithm for generating routes. This will continue to be
a fruitful area for development. However, there are fundamental limits on
the extent to which global search techniques can scale. As the numbe of
input variables increases, the complexity of global search techniques
generally increases exponentially. We do not see much hope in getting
around these scaling problems. Consequently, global search procedures
can only account for a subset of all relevant factors and constraints when
generating routes. This suggests that the output of global-search-based
route planners can never be stand-alone. Some post-processing will
inevitably be required to check these routes for realism.

Generative Planning - Classical planners and constraint-based planners
are usually considered to be generative planners -- planners that operate
by generating plans from scratch or a limited plan skeleton. In general,
planners in this category are not well-suited to real-time planning and
replanning problems. For a generative planner to be part of a real-timeI system, two things are necessary: ., library of welIl-engineered skeletal
plans and a reactive control system. The skeletal plans are needed so that
•he planner avoids searching through a very large space of possible plans.
A reactive control system is needed so to guarantce real-time reactivity
while N•hen the., tuation is evolving faster than the planner can react. The
relationship between planning and real-time reactivity is currently a
significant research area in Al. The basic research relating generative
plannim1, and reactive control should be monitored.

109 BDM/VSQ-91-0742--TR

BDM INTERNATIONAL, INC. "

Transformational Planning -As described in Chapter 4, I
transformational planners operate by recalling and modifying fully-
detailed plans. In contrast to the generative planners, these planners seem
be suited to real-time planning problems. Since they always begin with a
detailed plan, immediate execution of the first steps of that plan should be
feasible. However, there is a risk. If the plan is executed prior to I
completing the transformation process, then the plan may be faulty and
the first steps of that plan may represent inappropriate actions. On
balance however this seems like a reasonable approach to real-time
planning/replanning. A possible initiative in this area should be explored.

Planning from First-Principals - This remains an interesting research
area with potentially high payoff. However, first-principals planners are
not ready for serious applications. U
Planning, Probability and Decision Theory - Decision and probability
theory can be used to project probabilities, select options, control the
planning process, allocate resources to control versus planning, support
anytime problem solving, etc. The application of probabilistic and decision
theoretic techniques to automated planning is just beginning to be
explored. Although this work is still exploratory, it deserves careful
monitoring.

Planning and Optimization - As discussed in Chapter 8, there is a
natural complementarity between Al-based heuristic problem solving and I
OR-based optimization techniques. We believe that a careful integration of
Al-based automated planning techniques with optimization procedures
could lead to sibstantial improvements in automated planning technology.
Specifically, we believe that systems can be developed that generate plans
in real-time that are of reliably high quality. A specific architecture for
merging these approaches was proposed in Chapter 8. Many others are
possible. We believe this to be a key area for future investment.

Hardware for Planning - Automated planning is usually a
computationally intensive activity. Because of this, it seems that hardware
systems tailored to processes necessary for automated planning could be
useful. This area has not been explored in great depth, but, as we showed
in Chapter 9, there is considerable potential for dedicated hardware to be
applied to planning problems.

11 0 BDM/VSQ-91-0742-TR

I BDM INTERNATIONAL, INC.

I REFERENCES

Chapters 1-8 References.

I Agre,. P. and Chapman, D. (1987) "Pengi: An Implementation of a Theory of Activity,"
Proceedings of the Sixth NVational Conference on Artificial Intelligence. 268-272.

Alien, J. (1983) "Maintaining Knowledge about Temporal Intervals," Communications__
of the ACM. 26, 11, 832-843.

3Allen, J. (1984) "A General Theory of Action and Timc,. Artificial Intelligence, 21:121- _

154.

3 Arbros-lngcrson, & Steel, 1988 --

Berg-Cross, G. (1991) "Issues for Muhtiagent-Bascd Associate Planning Systems,"
Proceedings of the Conference on Associate Technology, 3-16. _.

Boddy, M. (1991) "Anytime Problem Solving Using Dynamic Programming,"
Proceedim,'s of the Ninth National Conference con Artificial Intelligence, 738-743.

I Brooks. R. (1991) "Intelligence without Representation," Artificial Intelligence. 47,
139- 159.

S Brown, F. (ed.) (1987) The Frame Problem in Artificial Intelligence, Morgan
K a ufman n.

Chapman. D. (1987) "Planning for Conjunctive Goals," Artificial Intelligence,
32:333-377.

Dean. T. (1990) "Planning under Uncertainty and Time Pressure," in. Katia Sycara
(ed.) Proceedings o~f the Works hop on Innovative Approaches to Planning.
Scheduling, and Control. Morgan Kaufmanni Publishers, 390-395.-"

3 ~ Dean, T. and Bloddy, MI. (1988) "An Analy,"is of Time-Dependent Plar, ing,"
Proceedings of the Seventh National Conference on Artificial Intelligence, 49-54.

Dean, Tl. and Kanazawa, K. (1989) "Persistence and Probabilistic Projection," IEEE
Transactions on Systems, Man, and (bernetics, 19(3), 574-585.

Dean. T. and McDermott, D. (1987) "Temporal Data Base Management," ArtificialI Intelh~gence, 32(1), 1-55.

Dechtcr. R. Merir. 1 and Pearl. J. (1989) "Temtporal Constraint Networks," Proceedings
of the tFirst International Conference on Principles of Knowledge Representation and
Reasoning, 83-'??.

D,,:Y~czr, J. (1988)"'An Assumption-Based Truth Maintenance System," A rtificial

BDM INTERNATIONAL, INC.

Fagin, R. and Halpern, J. (1988) "Belicf Awareness and Limited Reasoning," Artificial
Intelligence, 34: 480-490.

Fikcs, R. and Nilsson. N. (1971) "STRIPS: A new Approach to the Application of
Theorem Proving to Problem Solving." Artificial Intelligence, 2, 189-208.

Fikes. R., Hart. P. and Nilsson, N. (1972) "Learning and Executing Generalized Robot
Plans," Artificial Intelligence, 3, 4.

Freeman, R. (1991) Searching for a Better Plan, Ph.D. Dissertation, in prcparation.

Ginsburg, NM. (1987) Possible Worlds Planning," in M. Gcorgelf and A. Lansky,
Reasoning about Actions and Plans: Proceedings o€ the 1986 Workshop, Morgan
Kauffman.

Ginsburg, M.(1990) "Computational Considerations in Reasoning about Actions," in
Katia Sycara (ed.) Proceeding., of the Workshop on Innovative Approaches to
Planning, Scheduling, and Control. San Mateo: Morgan Kaufmann Publishers, Inc.

Green. C. (!%09) Applications of Theorem Proving to Problem Solving," Proceedings
of the Pirst International Joint Conference on Artificial Inrelliger'ci.

Haack. S. (1978) Philosophy of Logic, Cambridge University Press'.

Haddawy, P. and Hanks, S. (1990) "Issues in Decision T'heoretic. Flann'ng: Symbolic
Goals and Numeric Utilities," in Katia Sycara (ed.) Proceedings ot .he Workshop on
Innovative Approaches to Planning, Scheduling, and Control. Sa~l Mateo: Morgan I
Kaufmann Publishers, Inc., 48-58.

Halpern. J. and Shoham, Y. (198 , "A Propositional Modal Logic of Time Intervals,"
Proucedings of the Symposium on Logic in Computer Science. ,3oston, MA., 27)-292. i
Hammond, K. (1989) Case-based Planning: Viewing P,'lnning as a Memory Task.
Academic Press, New York.

Hanks, S. (1990) "Practical Teri ,oral Projection." Proceedings of the Eighth National
Conference on Artificial Intelligence.

Hendler. J. and Agrawala, A. (1990) "Mission Critical Planning: Al on the MARUTI
Real-Time Operating System. in Katia Sycara (ed.) Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling, and Control. San Mateo: Morgan
Kaufmann Publishers, Inc.

Henrion, M. (1991) "When is a Model Big Enough," in working notes for the
Workshop on Knowledge-based Construction of Probabilistic and Decision
Models.

Horvitz, E. (1991) Personal communication.

Jackson, P.. Rcichgelt, H. and van llarmelen, F., (1989) Logic-Based Knowledge
Representation, Cambridge, MIT Press.

112 BDM/VSQ.91-0742-TR

BDM INTERNATIONAL, INC.

Kaelbling, L. (1987) "An Architecture for Intelligent Reactive Systems,".in M.
Georgeff and A. Lansky, Reasoning about Actions and Plans: Proceedings of the 1986
Workshop, Morgan Kauffman.

Kaelbling, L. and Rosenschein, S. (1990) "Action and planning in embedded agents,"
in Patti Maes (ed.) New Architectures for Autonomous Agents: Task-levLl
Deco'nposition and E.,Fergent Functi"nalit., Cambridge: MIT Press.

Kambharnpati, S. (1990) "A Theory of Plan Modification," Proceedings of the Eight
National Conference on Artificial Intelligence.

Kautz, H. and Ladkin, P. (1991) "Integrating Metric and Qualitctive Temporal
Reasoning," Proceedings of the Ninth National Conference of Artificial Intelligence,
241-246.

Korf, R.E. "Real-time Path Planning," Proceedings of the DARPA Workshop on
Knowledge-Based Planning, December 1987.

Korf. R. (1988) "Planning as Search," Artificial Intelligence.

Kowolski, R. (1979) Logic for Problem Solving, North Holland.

I..askev, K. (1990) "A Probabilistic Reasoning Environment." Proceedings of the Sixth
conference on Uncertainty in Artificial Intelligence, 415-422.

Laskey, K.B. and Lehner, P.E. (1989)"Assumptions, Beliefs and Probabilities,"
Artificial Intelligence, 41:65-77.

Laskey, K.B. and Lehner, P.E. (1990) "Belief Maintenance: An Integrated Approach to
Uncertainty Management," in Readings in Uncertainty, Shafer, G. and Pearl, J. (eds.),
Morgan Kaufman Publishers, Inc.: San Mateo, CA.

Laskey, K. and Lehner, P. (1991) "Some Maxims for Small Worlds," in working
notes for the Workshop on Knowledge-based Construction of Probabilistic and
Decision Models.

Lehner, P.E. (1990e) "Adversarial Planning Search Procedures with Provable
Properties," in New Directions in Command and Control Systems Engineering, S.
Andriole (ed.), AFCEA International Press: Fairfax. VA.

Lehner, P.E. (1991) "Probability and Anytime Problem Solving," Proceedings of the
Conference on Associate Technology, 177-183.

Lindlcy, D. (1982) "Scor;ng Rules and the Inevitability of Probability,"
American Statistical Review, 50:1-26.

Linden, T. (198?) Transformational Synthesis paper, AI Magazine,....

Ligozat, G. (1991) "On Generalized Interval Calculi," in Proceedings of the
Ninth National Conference on Artificial Intelligence, 234-240.

Mackworth, A. (1987) "Constraint Satisfaction," in S. Shapiro (ed.) The Encyclopedia

of Artificial Intelligence, New York: Wiley, 205-211.

113 BDMIVSQ-91-0742-TR

BDM INTERNATIONAL, INC.

Martin, and Allen (1990) "Combining Reactive and Strategic Planning through
Decomposition Abstraction," in Katia Sycara (ed.) Proceedings of the Workshop on
Innovative Approaches to Planning, Scheduling, and Control. San Matco: Morgan
Kaufmann Publishers, Inc., 137-143. "

McAllestcr, D. and Rosenblitt, D. (1991) "Systematic Nonlinear Planning," Proceedings
of the Ninth National Conference on Artificial Intelligence, 634-639.

Meng, A., Ntafos, S. ana lsoukaias, M. "An Approach to Real-Time Path Planning for
Hanaling Targets and Unexpected Threats," in Proceedings of the Conference on
Associate Technology, George Mason University, June 1991.

Minton, S. (1988) Learning Search Control Knowledge: An Explanation-based
Approach. Kluwer.

Mitchell, B. (1991) "An Overview of the F-117A Mission Planning Systems," presented
at the Associate Technology conference, June 1991. -

Ncwell, R. and Simon, H. (1963) "GPS, a Program that Simulates Human 'Thought," in
Feigenbaum, E. and Feldman, J. Computers and Thought. McGraw-Hill.

Payton, D. (1990) "Exploiting Plans as Resources for Actions, in Katia Sycara (ed.)
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling,
and Control. San Matco: Morgan Kaufmann Publishers, Inc.

Pearl, J. (1984) Heuristics, Addison-Wesley.

Pearl, J. (1990) "Which is more believable, the probably provable or the provably
probable," Technical Note, UCLA, January 1990.

Pednault, E. (1988) "Extending Conventional Planning Techniques tr, Handle Actions
with Context-Dependent Effects," Proceedings of the Seventh National Conference onArtificial Intelligence, 55-59.

Peot, M. and Breese, J. (1991) "Model Construction in Planning," in working notes for

the Workshop on Knowledge-based Construction of Probabilistic and Decisicn Models.

Rciter, R. (1980) "A Logic for Default Reasoning," Artificial Intelligence. 13: 81-132.

Reiter, R. (1987) "Non-monotonic Reasoning," Annual Review of Computer Science,
Vol 2, 1987.

Sacerdoti, E. (1977) A Structure for Plans and Behavior, Elsevier Publishing Co.

Silbcrt, M. "An efficient algorithm for path planning to avoid dynamic 3D obstacles,"
in Proceedings of the Conference on Associate Technology, George Mason University,
June 1991.

Shohair, Y. (1988) Reasoning About Change, MIT Press.

Slagle, J. and Hamburger, H. (1985) "An Expert System for a Resource Allocation
Problem," Communications of the ACM, 28(9), 994-1004.

Stefik, M. (1981) "Flanning with Constraints," Artificial Intelligence, 16, 111-140.

114 BDMIVSQ-91-0742-TR I . .

BDM INTERNATIONAL, INC.

Tate, A. (1977) "Generating Project Networks," IJCA177, 888-893.

Wellman, M. (1990) Formulation of Tradeoffs in Planning Under Uncertainty. Pitman
and Morgan Kaufmann.

Wellman, M. and Doyle, J. (1991) "Preferential Semantics for Goals," Proceedings of
the Ninth National Conference on Artificial Intelligence, 698-703.

Wilkins. D. (1988) Practical Planning: Extending the Classical A/ Planning Paradigm,
Morgan Kaufmann.

Chapter 9 References.

I- Marty Broadwell, "Mission Planner Subsystem Functional Description",
presentation at SAC Subcommittee meeting. March 1991, and subsequent discussions
concerning the Zap processor, and conversations with M.G. Madden, also of Lockheed.
in March 1991.

2. Ramkumar and Kale, "Compiled Execution of the Reduce-OR Process Model on
Multi-processors". Logic Programming. Proceedings of the North American
Conference, 1989, pp 3 1 3 -3 3 1 .

3. Saletore and Kale, "Obtaining First Solutions Faster in AND-OR Parallel
Execution of Logic Programs". Logic Programming. Proceedings of the North
American Conference, 1989, pp6 9 7 -7 12 .

4. Shyam Mudambi, "Performance of Aurora on a Switch Based Multi-
processor"Logic Programming, Proceedings of the North American Conference, 1989.

5. Peter Szeredi in "Performance Analysis of the Aurora Or-Parallel Prolog
System". Logic Programming, Procecdings of the North American Conferene., 1989.
pp 71 3- 7 3 2 .

6. Ashok Singhal and Yale Pratt. "Unification Parallelism: How much can we
exploit?". Lo-gic Programming. Proceedings of the North American Conference, 1989,
ppl134-1147.

7. Ashok Singal, "A High Performance Prolog Processor with Multiple Functional
Units". Proceedings of the 16th Annual International Symposium on Computer
Architectu.. IEEE, 1989, p 19 5 -20 2

8. Paralogic. "Parallel PROLOG On Your Desktop", Al Review. Summer 1990.

9. H. Benker et. al. "KCM: A Knowledge Crunching Machine", Proceedings of the
1989 International Symposium on Computer Architecturc, pp186-194.

I
I1 15 BMVQ9-72T

BDM INTERNATIONAL, INC. i

10. Konagaya. Habata. Atarashi, and Yokota (of NEC), in "Performance Evaluation I
of a Sequential Inference Machine CHI", Logic Programming. Proceedings of the
North Amrerican Conference, 1989.

11. "PESA I- A Parallel Architecture for Production Systems from the 1987 Parallel
Processor Conference Proceedings.

12. Anurag Acharya and Milind Tambe, "Production Systems on Message Passing
Computers: Simulation Results and Analysis", also in the 1989 Parallel Processing
Conference Proceedings.

13. M.M. Gupta and T. Yamakawa, ed..Fuzzy Computing. Theory. Hardware. and
Applications

14. M.M. Gupta and T. Yamakawa, ed. ,Fu.zy Computing. Theory.lHardware, and
Applications (author & title?) describes the inference engine elements, memory, and
controller I
15. Hirota and Ozawa in this same book describe a fuzzy flipflop.

16. H.Niemann, G.F.Sagerer, S.Schroder, and F.Kummert, "ERNEST: A Semantic
Network System for Pattern Understanding", IEEE Transactions on Pattern Analysis
and Ma hine Intelligence, Sept. 90 Vol 12 No 9 pp 883-905 i
17. Furuya, Kusumoto, Handa, and Kokubu in "The Prototype of a Semantic
Network Machine IXM", 1989 International Conference on Parallel Processing l
18. Rina Dechter, Itay Meiri and Judea Pearl, "Temporal Constraint Networks",
Knowledge Representation '89 Proceedings

19. Charles Weems, Edward Riseman and Allen Hanson of the University of i
Massachusetts and Azriel Rosenfeld of the University of Maryland, "A Report on the
Results of the DARPA Integrated Image Understanding Benchmark Exercise",
Proceedinzs. 1989 Image Understanding Workshop

20. "KBVision Marketing material provided by Amerinex Artificial Intelligence,
Inc. I
21, R. Heaton, D. Blevins, anti E. Davis, "A Bit Serial VLSI Array Processing Chip for
Image Processing", JSSC vol 25, No. 2, Apr 90, pp364-368
22. NCR Corporation," NCR45CG72 Geometric Arithmetic Parallel Processor". Dayton,

Ohio, 1984.

23. Electronics Design, Dec 1' 1990. p136.

24. Ni. Motomura et. al. of NEC, in "A 1.2 Million Transistor 33Mhz 20-b Dictionary
Search Processor (DISP), Journal of Solid State Circuis, vol 25, No.5, Oct 90 ppl158-
1165.

25. A. StOlzle et. al., "Integrated Circuits for a Real Time Large Vocabulary i
Continuous Speech Recognition System", JSSC,Vol 26, No 1. Jan 91, pp 2- 11

I
1 16 BDM/VSQ-91-07412-TRi

I BDMV INTERNATIONAL, INC.

26. news report of the joint Motorola-TRW CPUAX central processor unit (??) (I
need to find the original and gct a proper citation.)

27. John Gosch, "Video Array Processor breaks speed record", Electronics Design,

i Julv 12, 1990 p133

28. Talher Daud, Silvio Eberhardt. and Andi Thakoor, "Electronic Neuroproccssors
and Neural Networks for Global Optimization", Technica l.Exchange Meeting on
Parallel Computing and Neural Networks, Jet Propulsion Laboratory, December 18-20,
1990, Volume 1.

I29. Togai Infralogic, Inc., Advertising literature distributed February, 1991, 30
Corporate Park, Suite 107, Irvine, CA, 92714.

30. Larry S. Davis, Danicl DeMenthon, Thor Bestul. David Harwood, H.V. Srinivasan,
and Sotirios Ziavras, "RAMBO - Vision Planning on the Connection Machine",
Proccediny-s of the 1989 lirnagc Undcrstanding Workshop, pp631-639.

31. 11. Barada and A. EI-Amawv. "A New Methodology for Mapping Algorithms into
-VLSI Arrays", Proccedinys of the Third Annual Parallel Processing Symposium, IEEE
Computer Society, March 29 1989, p3 1 .

I 32. Kcn-ichi Macda, Takeshi Aikawa, and Mitsuo Saito, "Mechanisms for
Achieving Parallel Operations in a Sequential VLSI Al Processor", Proceedings of the
Third Annual Parallel Processing Symposium, IEEE Computer Society, March 29 1989,
_ppl5 3 - 1 60.

33. T. Harder, H. Schoning, A. Sikeler, "Evaluation of Hardware Architectures for
Parallel Execution of Complex Database Operations", Proceedings of the Third Annual
Parallel Processing Symposium, IEEE Computer Society, March 29 1989. This is a
survey article.

I 34. Meng-Hoit Lim and Yoshiyasu Takefuji, "Implementing Fuzzy Rule-Based
Svstems on Silicon Chips", IEEE Expert, IEEE, Februarv 1990, pp 31-45.

35. Barbara Tuck, "Hligh Level Synthesis Unlocks Potential of FPGA's", Computer
Design, April 1, 1991, pp 50-54.

I
1
I
I
I
1 117 BDM/VSQ-91-0742-TR

BDM INTERNATIONAL, INC. U'

II
I

II
I

Ii
UJ

II

11l 8 BDM/VSQ-91-0742-TR

